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Abstract

We find that disclosing bank-specific information reallocates systemic risk, but whether

it mitigates systemic bank runs depends on the information disclosed. Disclosure re-

veals banks’ resilience to adverse shocks, and shifts systemic risk from weak to strong

banks. Yet, only disclosure of banks’ exposure to systemic risk can mitigate systemic

bank runs because it shifts systemic risk from more vulnerable banks to those less vul-

nerable. Optimal disclosure thus maximally differentiates such exposure, provided that

banks experience runs simultaneously, if inevitable. Disclosure of banks’ idiosyncratic

factors does not differentiate such exposure, rendering the resulting reallocation of sys-

temic risk ineffective in mitigating systemic runs. In the context of disclosing stress-test

results, when the quality of the banking system deteriorates, the regulator may have

to face a sudden run on a huge mass of banks rather than gradually abandoning weak

banks.
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1 Introduction

How to prevent systemic bank runs has been a central topic for policy makers and researchers

since the 2007-08 financial crisis, and has focused attention on the role of individual banks1 in

initiating and amplifying systemic risk through inter-bank linkages. To improve the stability

of the whole financial system, public disclosure of bank-specific information has subsequently

become a regular occurrence, as exemplified by stress tests. However, the existing literature

on regulatory disclosure either focuses on the disclosure of aggregate states, or ignores sys-

temic risk and the consequent strategic complementarity between investors of different banks.

Subsequently, it ignores the dependence of optimal disclosure on the nature of bank-specific

information.

This paper fills this gap by studying how the disclosure of different kinds of bank-specific

information affects the stability of a banking system facing systemic risk. We identify a

novel channel: disclosure of bank-specific information differentiates banks regarding their

resilience to adverse shocks, and shifts systemic risk from weak banks to strong ones. Yet,

only the disclosure of banks’ exposure to systemic risk (“systemic vulnerability” hereafter)

can mitigate systemic bank runs, because it shifts systemic risk from banks more vulnerable

to it to those less vulnerable. Optimal disclosure thus maximally differentiates banks in

such exposure, provided that they experience runs simultaneously, if inevitable. Disclosure

of banks’ idiosyncratic factors does not differentiate banks like that, rendering the resulting

reallocation of systemic risk ineffective to mitigating systemic bank runs.

Specifically, consider a model with a continuum of banks, each with a representative

investor.2 Banks hold long-term illiquid assets. If a bank survives to the maturity of its

asset, its investor receives the promised payoff. Otherwise, he receives nothing. Each investor

can stay with or run on his bank before the maturity of the bank’s asset. If he runs,

the bank definitely fails. If he stays, the probability of the bank survival is the sum of

three determinants. The first is a “fundamental,” which captures exogenous systematic

factors that affect all banks. The second is the product of an endogenous systematic factor,

1While we use the label “banks,” this should be interpreted broadly as financial institutions or non-
financial firms who are affected by and contribute to the liquidity of the whole financial system.

2Our focus is on how the disclosure of bank-specific information mitigates systemic bank runs. The setup
with one representative investor for each bank allows us to abstract away from the coordination problem
of different investors of the same bank, which has been extensively studied in the literature. Adding the
problem of within-bank coordination complicates the analysis but does not change our qualitative results.
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systemic risk, captured by a decreasing function of the total mass of investors who choose

to stay (“stayers”), and the bank’s “factor loading;” i.e., its systemic vulnerability. The

third determinant is the negative of a “cost” idiosyncratic to that bank, which captures all

exogenous factors affecting only that bank. Banks differ from each other in their systemic

vulnerabilities and their idiosyncratic costs.

To disclose information about the bank’s systemic vulnerability or idiosyncratic cost, the

regulator assigns each bank a score. After observing the scores, each investor observes a noisy

private signal of the fundamental, whose noise is independent and identically distributed

(i.i.d.) across investors. He then chooses to stay with or run on his bank. Following the global

games literature, we focus on the limiting case of vanishing noise to highlight the coordination

issue between banks’ investors instead of the (mechanical) impact of fundamental shocks. In

this limit, it is well known that investors choose switching strategies in equilibrium. That is,

an investor stays if and only if his signal realization is above a switching cutoff. The regulator

assigns different scores based on bank-specific information, which induces the banks’ investors

to choose potentially different switching cutoffs. Disclosure hence partitions all banks into

bank groups, with investors of each group sharing a common switching cutoff. Thus, we can

regard a disclosure rule (“a disclosure” henceforth) as a collection of sub-disclosures, each of

which is imposed on a different bank group.

To obtain general implications for optimal disclosure, instead of assuming a particular

objective function for the regulator, we assume only that she always prefers more banks

to be immune from runs, regardless of the fundamental. We find that for a disclosure to

be potentially optimal, its sub-disclosures must all be robust disclosures, defined as those

minimizing the maximum switching cutoffs of investors in the corresponding bank group,

given the mass of stayers outside the group.3 Subsequently, we characterize robust disclo-

sures of different kinds of bank-specific information. We find that regardless of which kind

of bank-specific information is revealed, a robust disclosure always equalizes the switching

cutoffs of all investors in the bank group. However, robust disclosures of different kinds of

3A robust disclosure is so named for two reasons. First, the bank group as a whole is immune from runs
only if its weakest constituent is immune; i.e., the bank whose investor’s switching cutoff is the maximum
among the whole group. By minimizing this maximum cutoff, a robust disclosure maximizes the robustness of
the weakest constituent, and thus of the whole group, to adverse fundamental shocks. Second, this approach
is in the spirit of maxmin expected utility theory of Gilboa and Schmeidler (1989), and Hansen and Sargent
(2001) show its connection to the robust-control theory.
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bank-specific information turn out to be very different qualitatively: while nondisclosure is

always a robust disclosure of idiosyncratic costs, a robust disclosure of systemic vulnerabili-

ties always maximizes the informational heterogeneity of banks in the group, provided that

their investors share the same switching cutoff.

To understand these results, we can regard the disclosure of either kind of bank-specific

information as effectively reallocating two fixed “budgets” across banks that are otherwise

informationally homogeneous to investors. On one hand, as in a standard information-design

problem, given the Bayesian plausibility constraint, disclosure of bank-specific information

makes some banks informationally stronger (i.e., believed by investors to be less vulnerable

to systemic risk or to have lower idiosyncratic cost by investors) than others. In other words,

disclosure reallocates the constant expected systemic vulnerability or the constant expected

idiosyncratic cost across banks. On the other hand, we show that, given the composition of

a bank group and the mass of stayers from outside, the aggregate systemic risk born by all

investors in this group when they are indifferent (i.e., their signals equal their equilibrium

switching cutoffs) is constant, regardless of disclosures. But disclosure of either type of bank-

specific information makes investors of informationally stronger banks bear more of such

risk when they are indifferent. In other words, disclosure effectively generates an assortative

matching: it reallocates more of the constant aggregate systemic risk to informationally

stronger banks.

To see why investors of informationally stronger banks bear more systemic risk, first

observe that when they are indifferent, they believe that investors of informationally weaker

banks are less optimistic about their banks’ survival and thus are less likely to stay than

themselves. The opposite holds for investors of informationally weaker banks: when they

are indifferent, they believe that investors of informationally stronger banks are more likely

to stay than themselves. Consequently, the mass of stayers expected by investors of infor-

mationally stronger banks when they are indifferent is less than that expected by investors

of informationally weaker banks when they are indifferent.

For the disclosure of different kinds of bank-specific information, the interaction of the

reallocation of the two fixed “budgets” is qualitatively different and thus has different policy

implications. Disclosure of systemic vulnerabilities results in a beneficial assortative match-

ing: holding constant the expected systemic vulnerability of the whole bank group, more of

the constant aggregate systemic risk is reallocated to investors of banks that are believed to
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be less vulnerable to systemic risk (i.e., informationally stronger in systemic vulnerabilities).

This improves the average robustness of all banks to adverse shocks to the fundamental.

Provided that all banks experience runs simultaneously if inevitable, disclosure of systemic

vulnerabilities results in a Pareto improvement for the whole bank group. As a result, the

robust disclosure of such information should maximize such improvement.

Specifically, we show that if the physical systemic vulnerabilities of the banks in a group

do not differ very much from each other, such that investors in the group share the same

switching cutoff even if full disclosure of this group is applied, then full disclosure is the

desired robust disclosure of systemic vulnerability. Otherwise, the robust disclosure assigns

as many scores as possible, and maximizes informational heterogeneity between any two

scores, provided that all investors in the bank group still share the same switching cutoff. We

further show that as the number of scores allowed approaches infinity, the robust disclosures

converge to a limiting disclosure. We characterize the limiting disclosure, and show that

the common switching cutoff that it induces is the infimum of those induced by all robust

disclosures.

In contrast, disclosure of idiosyncratic costs does not generate informational heterogeneity

in systemic vulnerability. Thus, the resulting assortative matching, which instead reallocates

more of the constant aggregate systemic risk to investors of banks that are believed to have

lower idiosyncratic costs, is ineffective in mitigating systemic bank runs. Consequently,

nondisclosure is a robust disclosure of idiosyncratic costs for any bank group.4

Our results shed light on the public disclosure of stress-test results with the presence of

systemic risk. Suppose the regulator’s objective is to maximize the mass of banks immune

from runs in a hypothetical adverse state of the economy. Then the sub-disclosure of her

optimal disclosure for the bank group immune from runs must be its corresponding robust

disclosure, which maximizes its joint resilience. To maximize the informational strength of

this group, banks subject to runs consist exclusively of physically weak banks, with full dis-

closure applied, unless the state is so adverse that no bank is immune from runs, regardless of

disclosures. Consequently, two novel implications of systemic risk are underscored. First, un-

4This result is due to our assumption that each bank has a representative investor. This precludes the
role of disclosure of bank-specific information in mitigating miscoordination between investors of the same
bank, which has been well studied in the literature. Our results concerning how such disclosures affect the
stability of the banking system by reallocating systemic risk across banks persist even if this assumption is
relaxed.
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like that of idiosyncratic factors, optimal disclosure of systemic vulnerabilities entails further

differentiation of banks immune from runs, due to the aforementioned beneficial assortative

matching. Second, when the quality of the banking system deteriorates, the regulator may

have to face a sudden run on a huge mass of banks rather than gradually abandoning weak

banks. This is because, while the sacrifice of physically weak banks enhances the informa-

tional strength of the rest, it also reduces the mass of stayers and thus increases the systemic

risk faced by the investors of unsacrificed banks. When the second effect dominates, an

infinitesimal sacrifice of weak banks would worsen the resilience of the others, calling for

further sacrifice, until the first effect dominates.

The rest of this paper is organized as follows. Section 1.1 reviews the related literature.

Section 2 sets up the model. Section 3 illustrates the main insight of our results with a sim-

plified example of binary scores. Section 4 presents our main results. Section 5 demonstrates

the insight from our main results on the optimal disclosure of stress-test results. Section 6

shows that our main results are robust to informative priors and correlation of bank-specific

information in different dimensions. Section 7 concludes. All proofs are relegated to the

appendix unless otherwise specified.

1.1 Literature Review

Our paper is mainly related to two strands of the literature. The first strand is the dis-

cussion of bank transparency and disclosures. A particularly prevalent question is how to

design bank stress tests. Goldstein and Sapra (2014) comprehensively review the nature and

cost-benefit analysis of disclosing the results of stress tests. Our paper centers around the

two effects of stress tests that they highlight: market discipline and coordination failure.

Although we share an important point with Bouvard et al. (2015) that there are multiple

banks in the system and that stress tests help distinguish between them, in their model,

banks are independent of each other, so each faces a separate coordination game with their

own homogeneous investors. Goldstein and Huang (2016) and Inostroza and Pavan (2020)

incorporate Bayesian persuasion into coordination games, where a regime is subject to a

run by homogeneous investors. They study disclosure of the aggregate state but not of the

bank-specific information. Note that Inostroza and Pavan (2020) also discuss discriminatory

disclosures which release different information to different investors. Goldstein and Leitner
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(2018), Williams (2017) and Orlov et al. (2018) also model stress tests in Bayesian persuasion

but do not focus on coordination issues. They augment their models with other elements

including asset markets, capital requirements, and investment decisions. Complementary to

this work, we study how information disclosure (endogenously) creates heterogeneous inter-

ests among investors facing coordination problems, and how disclosure of different kinds of

bank-specific information affects investors’ decisions and the stability of the banking system.

The second strand is the literature on global games. Pioneered by Carlsson and van

Damme (1993), this literature is elegantly surveyed by Morris and Shin (2003). In partic-

ular, our work is more closely related to the literature on global games with heterogeneous

players. For example: Corsetti et al. (2004) characterize the impact of a large trader on a

population of small ones; Frankel et al. (2003) prove equilibrium uniqueness for a large class

of these games; and Sákovics and Steiner (2012) provide a criterion that can be used to find

the optimal targets for a variety of interventions in regime-change games with heterogeneous

agents. Based on Sákovics and Steiner (2012), Drozd and Serrano-Padial (2018) discuss

a credit-enforcement cycle driven by the collective default of borrowers, and Leister et al.

(2017) studies strategic interaction in networks, and Serrano-Padial (2020) explore global

games with heterogeneous agents based on potential maximization. Invoking Morris and

Yang (2021), Dai and Yang (2020) study the role of organizations in coordinating the ac-

tions of individuals with heterogeneous interests. Related to the approach developed in Dai

and Yang (2020), this paper studies an information-design problem: how the informational

heterogeneity created by the regulator’s disclosure affects the stability of banking systems.

Some papers also study systemic bank runs in the setup of global games. For exam-

ple, Liu (2019) studies the interaction between bank runs and asset prices. Goldstein et al.

(2020) use a Diamond-Dybvig style setup featuring within-bank and cross-bank strategic

complementarity among depositors and find that an increase in heterogeneity among banks

makes all banks more stable, given the existence of cross-bank strategic uncertainty. The

heterogeneity in their model is exogenous, while in our model it stems from information

disclosure and is thus the objective of information design. In addition, our work is based on

different economic mechanisms. Theirs rests on the interaction between within- and cross-

bank strategic uncertainty, while ours is based on the reallocation of aggregate systemic risk

across banks, and on its interaction with the reallocation of expected systemic vulnerability

and of expected idiosyncratic cost, respectively, all of which operate across banks. In our

6



model, within-bank strategic uncertainty is precluded by the assumption of bank-level rep-

resentative investors. In addition to illustrating the new mechanism, we further derive its

implications for the regulator’s design of optimal disclosure, and point out the qualitatively

different effects of disclosing different kinds of bank-specific information.

2 Model Setup

2.1 Agents

We consider a three-date economy consisting of a regulator (“she”), a continuum of banks

and a continuum of investors. Only the regulator and the investors are active players, all

of whom are risk neutral. Both the gross discount rate and the gross risk-free rate are

normalized to one. At date 0, the regulator designs rules for the disclosure of bank-specific

information from all banks to investors. The total mass of banks is normalized to 1. Each

bank i has a representative investor, henceforth called investor i.5 At date 1, each investor

i (“he”) chooses to stay (li = 1) or to run (li = 0) based on the information available to

him by then. If he runs, he secures the one unit of consumption good invested in bank i’s

long-term project before date 0, and bank i definitely fails at date 2. If he stays, he receives

R units of consumption good from the project if bank i survives at date 2, and nothing if it

fails then.

2.2 Banks’ Survival Probabilities

To focus on how the regulator’s information design affects investors’ actions, we assume that

the probability that bank i survives at date 2, P i, follows the following reduced form, and

5The investor here refers to banks’ wholesale investors and large depositors who are not fully insured
through depositor insurance or collateral. Since we are focusing on the coordination problem at the level
of the whole banking system, we intentionally assume a representative investor to mute the coordination
problem within each individual bank. Adding the coordination problem at the level of individual banks does
not change the qualitative results but complicates the analysis.
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abstract from the details of its microfoundation:6

P i =
1

R

[
θ − ri · a (l) + 1− ci

]
. (1)

The “fundamental” θ is an aggregate state of the economy capturing all exogenous fac-

tors that simultaneously affect the survival probability of all banks, such as macroeconomic

conditions. We assume that θ is distributed over
[
θ, θ̄
]
⊂ R.

The second term in equation (1) is our key addition to capture the strategic interaction

among banks. In particular, l ,
∫
lidi is the mass of all investors in the economy who

stay (“stayers”), which can be interpreted as outside liquidity. The loss function a, which is

decreasing in l, captures the systemic risk faced by all banks. Hereafter, we directly refer to

a (l) as systemic risk. We allow for a generic functional form of a, as long as it is positive

and Lipschitz continuous almost everywhere. The coefficient ri captures the vulnerability

of bank i to systemic risk. This could be due to the heterogeneity in banks’ asset liquidity

or network structure in terms of asset commonality or cross holdings. We assume that ri =

r > 0 with probability qr and ri = r̄ > r with probability 1− qr. Let Er = qrr + (1− qr) r̄.
The idiosyncratic “cost” ci captures all exogenous factors that only affect the survival

probability of bank i. We assume that ci = c with probability qc and ci = c̄ > c with

probability 1− qc. Let Ec = qcc+ (1− qc) c̄.
The following parametric restriction is needed to guarantee that the survival probability

P i is always in [0, 1]:

−1 ≤ θ − r̄a (0)− c̄ < θ̄ − ra (1)− c ≤ R− 1 .

Given the survival probability P i, the incremental payoff for investor i from staying relative

to running is

π , P iR− 1 = θ − ria (l)− ci . (2)

6The setup is designed such that the net return to investor i’s investment follows the two-factor model
in (2) analogous to those in the empirical asset-pricing literature. The loading on the exogenous factor θ is
normalized to one, and that on the endogenous factor −a(l) is ri. The expected idiosyncratic cost −Ec can
be viewed as “alpha” and Ec − ci as the residual. Like a standard factor pricing model, equation (2) can
be viewed as a decomposition of all factors affecting the survival of bank i, given its investor’s action. We
adopt such a factor model because it is technically convenient and easy to interpret. Our main results hold
qualitatively beyond this particular functional form.
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2.3 The Regulator’s Information Design

The focus of this paper is on the regulator’s optimal design of disclosure rules (“disclosures”

hereafter) at date 0 about relevant bank-specific information (i.e., ri or ci) to mitigate sys-

temic bank runs caused by strategic uncertainty. To highlight our main insights, we assume

in our baseline model that investors rely completely on the regulator’s disclosure to learn

about ri and ci: without her disclosure, they know only their expected values, Er and Ec.
We show in Section 6 that our main insights are robust to the relaxation of this assump-

tion. To better contrast disclosures of bank-specific information in different dimensions, we

assume that ri and ci are independently distributed, so that disclosures about ri do not

reveal information about ci, and vice versa. We discuss the case of correlated information in

Section 6.

A disclosure specifies how scores are assigned to banks based on their ri and ci, so that

investors can only distinguish between banks with different scores, but not between those

with the same score. Without loss of generality, any disclosure about ri and ci with n scores

can be represented by the conditional means of ri and ci for each score and the mass of banks

receiving that score; i.e., with {(rk, ck, wk)}nk=1, where rk = E[ri|score k], ck = E[ci|score k],

and wk is the mass of banks receiving score k. By construction, wk ∈ [0, 1] for all k, and∑n
k=1wk = 1. As a well known result in the literature of information design, a disclosure

{(rk, ck, wk)}nk=1 is feasible if and only if it satisfies Bayesian plausibility; i.e., rk ∈ [r, r̄]

and ck ∈ [c, c̄] for all k,
∑n

k=1wkrk = Er, and
∑n

k=1wkck = Ec. For both expositional

convenience and practical consideration, we focus on finite disclosures that assign a finite

number of scores to banks. In Section 4.5, we present our results concerning the limiting

case where infinitely many scores are allowed.

Henceforth, superscripts denote exogenous objects, and subscripts denote conditional

means given a disclosure and the resulting endogenous objects. For ease of presentation, we

refer directly to rk, ck, or (rk, ck) as a “score”. So a bank with a lower score is believed by

investors to be stronger. We refer to such a bank as “informationally stronger,” and the

heterogeneity in scores as “informational heterogeneity.” In contrast to “scores,” we refer

to ri ∈ {r, r̄}, ci ∈ {c, c̄}, or (ri, ci) ∈ {r, r̄} × {c, c̄} as a “type,” a bank with a lower

type as “physically stronger,” and the heterogeneity in types as “physical heterogeneity.” In

addition, we use “a type-ri investor,” “a score-rk investor,” and “a score-(rk, ck) investor”

or simply “a score-k investor” to denote the representative investor of a type-ri bank, that
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of a score-rk bank, and that of a score-(rk, ck) bank, respectively. Moreover, we refer to dis-

closures that potentially reveal something about banks’ systemic vulnerabilities but nothing

about idiosyncratic costs (i.e., with ck = Ec for all k) as “disclosures in dimension r,” and

“disclosures in dimension c” are defined analogously.7

2.4 Information about the Fundamental

At date 0, the regulator and all investors share a common prior of the fundamental θ, repre-

sented by a probability density function h (·). At date 1, the investor of each bank i observes

a private signal about θ, xi = θ + σ · εi, where εi is independent and identically distributed

according to a probability density function φ(·), and the parameter σ determines the mag-

nitude of the signal noise, which captures the magnitude of fundamental uncertainty (about

θ) faced by investors. An investor’s signal can be understood as his private information

or opinion about the macroeconomy. The probability density functions h(·) and φ(·) are

continuous, bounded, and fully supported over
[
θ, θ̄
]

and (−∞,+∞), respectively.8 As is

common in the global games literature, we assume the existence of dominance regions. That

is, when θ is sufficiently low (high), it is the dominant strategy of any investor to run (to

stay), irrespective of the actions of other investors; i.e.,

θ − ra (1)− c < 0 < θ̄ − r̄a (0)− c̄ . (3)

Note that a stayer’s payoff (2) is strictly increasing in the total mass of stayers. This

creates motives for an investor to coordinate his decision with others in the game at date 1.

However, the idiosyncracy of signal noise prevents investors from perfectly knowing others’

signal realizations and thereby inferring their actions. As highlighted by the global games

literature, strategic uncertainty (about others’ actions) as such could persist and thus lead

to miscoordination among investors, even if fundamental uncertainty vanishes (i.e., σ → 0).

To explore the impact of the regulator’s information design on strategic uncertainty and to

sharpen its implication on the stability of the banking system, we follow the convention of the

global games literature and focus on the limit of σ → 0.9 This also guarantees equilibrium

7We do not use “disclosures about ri (ci)” to avoid the confusion with the treatment of a specific bank.
8Unbounded support of φ(·) provides convenience of exposition. Our results remain valid for bounded

support with minor modification.
9See Corsetti et al. (2004), Goldstein and Pauzner (2005) and He et al. (2019) for examples.
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uniqueness. As is well known in this literature, it is without loss of generality in this limit

to focus on symmetric equilibria with switching strategies. That is, an investor stays if and

only if he observes xi above a switching cutoff x̂ (rk, ck), which depends on the score (rk, ck)

assigned to his bank by the regulator. Therefore, we say a bank is immune from runs in a

state θ if x̂ (rk, ck) ≤ θ and subject to runs in θ if x̂ (rk, ck) > θ.

2.5 The Regulator’s Objectives

Finally, we introduce the regulator’s objective. A disclosure {(rk, ck, wk)}nk=1 results in a set

of limiting switching cutoffs {x̂k}nk=1, such that all banks with the kth score are subject to

runs almost surely if θ < x̂k and immune from runs almost surely if θ > x̂k.
10 Suppose

{x̂k}nk=1, the set of the cutoffs, has T distinct elements ranked as θ1 < θ2 < . . . < θT . Note

that T ≤ n by definition. For i ∈ {1, · · ·, T}, let Ki =
∑
{k|x̂k≤θi}wk denote the mass of

banks whose cutoffs are no greater than θi. For ease of notation, define θT+1 = θ̄. Then, the

mass of banks immune from runs in state θ is essentially

K
(
θ; {Kj, θj}Tj=1

)
,

T∑
i=1

Ki · 1{θi≤θ<θi+1} .

We refer to K
(
·; {Kj, θj}Tj=1

)
as a stability scheme.

Stability schemes can be partially ordered according to first-order stochastic dominance

(FOSD). A stability scheme that is first-order stochastically dominated by another has a

greater mass of banks immune from runs than does the latter under any circumstance (i.e.,

any value of θ). Therefore, the regulator prefers disclosure A to disclosure B if the stability

scheme resulting from A is first-order stochastically dominated by that resulting from B.

In reality, a regulator may have a variety of potentially conflicting objectives. For ex-

ample, in addition to maximizing the total number of banks immune from runs, she may

care about the survival of particular banks. Together with different importance weights of

outcomes, given different fundamental θ, combinations of those objectives result in different

preferences over disclosures. To obtain results robust to the fine details of the regulator’s

preferences, in our baseline analysis we characterize the general properties of the optimal

10Here, we use the term ”almost surely” because we are talking about the limiting switching cutoffs at
vanishing noise.
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disclosure under this minimum requirement of FOSD. As an application in stress tests, Sec-

tion 5 illustrates the central role of the results of our baseline analysis in the construction of

the regulator’s optimal disclosure given a practical objective function.

3 An Intuitive Illustration

This section illustrates the main idea of the paper using an example of binary-score dis-

closures, {(rk, ck, wk)}2
k=1, with fixed masses w1 and w2. By construction, w1+w2 = 1.

Disclosures in dimension r in this context refer to those with r1 ≤ Er ≤ r2 but c1 = Ec = c2,

and disclosures in dimension c refer to those with r1 = Er = r2 but c1 ≤ Ec ≤ c2. For con-

creteness of illustration, in this section, the regulator is assumed to maximize the probability

that all banks are immune from runs.

3.1 Preview of Results

Let

A (l) ,
∫ l

0

a
(
l̃
)
dl̃. (4)

If an investor believes that the mass of stayers l̃ is uniformly distributed on [l1, l2], then the

systemic risk that he expects is A(l2)−A(l1)
l2−l1 . By definition, A(0) = 0. Proposition 1 character-

izes the equilibrium switching cutoffs given disclosures in dimensions r and c, respectively,

as illustrated in Figure 1. Expected systemic risk under uniform beliefs plays an important

role in Proposition 1, which we will explain in Section 3.3.

Proposition 1. For disclosures in dimension r,

� if r2/r1 ≤ A(w1)
w1

1−w1

A(1)−A(w1)
, then

x̂1 = x̂2 = Ec+

(
E
[

1

r

])−1

A(1); (5)

� if r2/r1 >
A(w1)
w1

1−w1

A(1)−A(w1)
, then

x̂1 = Ec+ r1
A(w1)

w1

< Ec+ r2
A(1)− A(w1)

1− w1

= x̂2 . (6)
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Figure 1: Switching Cutoffs Resulting from Binary-Score Disclosure Rules

For disclosures in dimension c,

� if c2 − c1 ≤ A(w1)
w1
− A(1)−A(w1)

1−w1
, then

x̂1 = x̂2 = Ec+ Er · A (1) ; (7)

� if c2 − c1 >
A(w1)
w1
− A(1)−A(w1)

1−w1
, then

x̂1 =
A (w1)

w1

Er + c1 <
A (1)− A (w1)

1− w1

Er + c2 = x̂2 . (8)

Two patterns are evident in Figure 1. First, for disclosures in either dimension, we have

x̂1 = x̂2 when disclosures are not that informative (i.e., when the corresponding measures of

informational heterogeneity are in the reallocation regions11), and x̂1 < x̂2 when disclosures

are sufficiently informative (i.e., when measures of informational heterogeneity are in the

separation regions). Second, the common cutoff in the reallocation region resulting from

disclosures in dimension r is strictly decreasing in informational heterogeneity (measured by

r2/r1), while its counterpart in dimension c is constant. Recall that all banks are immune

from runs if and only if θ ≥ max {x̂1, x̂2}, and the optimal disclosures should thus minimizes

max {x̂1, x̂2}. Consequently,

Proposition 2. The optimal binary-score disclosure in dimension r maximizes informational

11We will explain why the regions are so named in Section 3.3.
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heterogeneity r2/r1 provided that x̂1 = x̂2, while nondisclosure is an optimal binary-score

disclosure in dimension c.

Proposition 2 articulates the qualitative difference between optimal disclosures in different

dimensions, which is the core result of this paper. Informational heterogeneity generated by

disclosures in dimension r (i.e., about banks’ systemic vulnerabilities) could reduce both

x̂1 and x̂2, and thus improve the whole banking system’s resilience to adverse shocks. The

optimal disclosure in that dimension takes full advantage of such improvement. That is, if

it is feasible to increase r2/r1 to the boundary between the reallocation and the separation

regions (i.e., A(w1)
w1

1−w1

A(1)−A(w1)
, given by Proposition 1), then this is the optimal disclosure in

dimension r. If physical heterogeneity r̄/r is so low that this disclosure is not feasible, then

it is optimal in dimension r to disclose as much as possible. However, such improvement is

absent from disclosures in dimension c, and thus nondisclosure is optimal.

3.2 Equilibrium Switching Cutoffs

As the basis for our illustration, this subsection provides a brief derivation of equilibrium

switching cutoffs (11) given a disclosure. For a given magnitude of fundamental uncertainty

σ, let x̂σi denote a score-(ri, ci) investor’s switching cutoff. Then, the probability that he

stays conditional on fundamental θ is

mσ
i (θ) , Pr(xi > x̂σi |θ) = 1− Φ

(
x̂σi − θ
σ

)
. (9)

As usual, we adopt the law of large numbers convention12 so that the total mass of stayers

is

Mσ (θ) ,
∑
i

wim
σ
i (θ) . (10)

If the investor instead chooses a different switching cutoff x̂σi + δ, then his expected payoff is∫ θ̄

θ

[θ − ria(Mσ (θ))− ci]mσ
i (θ − δ)h (θ) dθ .

12The law of large numbers is not well defined for a continuum of random variables (Sun (2006)). Our
convention is equivalent to assuming that opponents’ play is the limit of play of finite selections from the
population.
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It is optimal for him to choose δ = 0 in equilibrium, which requires that∫ θ̄

θ

[θ − ria(Mσ (θ))− ci] (mσ
i )′ (θ)h (θ) dθ = 0 .

Since mσ
i (θ) converges to 1{θ≥x̂i} as σ → 0, we have

x̂σi − ri
∫ θ̄

θ=θ

a(Mσ(θ))dmσ
i (θ)− ci = O (σ) . (11)

The system of equations (11) for both scores (ri, ci) yields the limiting cutoffs x̂i = limσ→0 x̂
σ
i ,

i ∈ {1, 2} in Proposition 1. Since the prior density h (·) is continuous, when investors’ private

signals are very accurate (i.e., when σ is small), the impact of the prior is absorbed by the

O (σ) on the right-hand side of (11), and the posterior probability density of the fundamental

θ, conditional on xi = x̂σi , is approximately 1
σ
φ
(
x̂σi −θ
σ

)
. Note that dmσ

i (θ) = 1
σ
φ
(
x̂σi −θ
σ

)
dθ,

and a(Mσ(θ)) is the systemic risk that a bank faces given θ. Thus,

∫ θ̄

θ=θ

a(Mσ(θ))dmσ
i (θ) (12)

is approximately (up to O (σ)) the systemic risk expected by a score-(ri, ci) investor whose

signal realization equals his switching cutoff (“a cutoff score-i investor” hereafter). In addi-

tion, the first term in (11), x̂σi , is approximately (up to O (σ)) the expectation of θ conditional

on xi = x̂σi . Therefore, the system of equations (11), which determine the limiting cutoffs x̂i

and thus the equilibrium, equalize all cutoff score-i investor’s expected payoff from staying

(see (2)) to zero, the payoff from running.

Equation (11) indicates that disclosures in both dimensions affect score-i investors’ switch-

ing cutoff in two ways. First, disclosures differentiate banks with different scores that are

otherwise believed by investors to be homogenous, subject to the Bayesian plausibility con-

straints ∑
i

wiri = Er , (13)

and ∑
i

wici = Ec . (14)
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In other words, disclosures in their respective dimensions “reallocate” the constant expected

systemic vulnerability Er or the constant expected idiosyncratic cost Ec across banks. Sec-

ond, they “allocate” different expected systemic risk to cutoff investors of banks that receive

different scores. Last and most importantly, the two interact only in disclosures in dimen-

sion r. The next two subsections elaborate the last two points concerning systemic risk,

respectively.

3.3 Reallocation of Constant Aggregate Systemic Risk

This subsection shows that disclosures in either dimension result in an assortative matching:

both reallocate more of the constant aggregate systemic risk to informationally stronger

banks (i.e., banks with better scores), and more so if the resulting informational heterogeneity

is greater.

3.3.1 Constant Aggregate Systemic Risk

From (12), the aggregate systemic risk expected by all cutoff investors is given by

∑
i

wi

∫ θ̄

θ=θ

a(Mσ(θ))dmσ
i (θ) =

∫ θ̄

θ=θ

a(Mσ(θ))dMσ(θ) =

∫ 1

0

a(Mσ)dMσ = A (1) , (15)

where A(·) is given by (4), the first equality in (15) is due to (10), and the second is due to

Assumption (3). Note that it is a constant regardless of disclosures.

The second equality in (15) enables us to understand this result from the perspective of

an average investor, who thinks of the whole economy as consisting of average investors like

himself but who receive private signals with independent noise. As a well known equilibrium

outcome in the global game literature, when his signal realization equals his switching cutoff,

he holds the Laplacian belief regarding the actions of other average investors in the limit

of σ → 0. That is, he believes that the fraction of them that are staying is uniformly

distributed on [0, 1],13 and thus the systemic risk that he expects is
∫ 1

0
a(Mσ)dMσ. While

derived from our specific setup, the constant-aggregate-systemic-risk condition (15) echoes

13To see this, since the noise of private signals is i.i.d., when the noise is small, an average investor believes
that the proportion of average investors whose signal realization is less than his own roughly follows the
uniform distribution over [0, 1]. When his signal is at his cutoff, this proportion equals the proportion of
stayers out of all investors who share the same switching cutoff.
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the belief constraint in alternative settings in Sákovics and Steiner (2012) and Serrano-Padial

(2020); i.e., the weighted average strategic belief is the uniform belief on [0, 1].

3.3.2 Reallocation of Systemic Risk

Now we show that when σ is small, as disclosures in dimension r or c increase informational

heterogeneity and thus increase the relative distance in switching cutoffs, ∆σ
1,2 , (x̂σ2 −

x̂σ1 )/σ, the proportion of stayers out of all score-1 investors expected by a cutoff score-1

investor is roughly invariant, but that out of all score-2 investors expected by the cutoff

score-1 investor strictly decreases. Therefore, the systemic risk expected by a cutoff score-1

investor,
∫ θ̄
θ=θ

a(Mσ(θ))dmσ
1 (θ), increases with ∆σ

1,2. A symmetric argument and an opposite

conclusion hold for a cutoff score-2 investor.

Recall from (11) that equilibrium cutoffs are determined by cutoff investors’ indiffer-

ence. A cutoff score-i investor’s belief about the fundamental θ induces his belief about the

proportion mj of stayers out of all score-j investors14 through (9):

Pr
[
mj ≤ m̃j|xi = x̂σi

]
= 1− Φ

(
−∆σ

i,j + Φ−1 (1− m̃j)
)

+O (σ) . (16)

When σ is small, as long as ∆σ
i,j is finite, the distribution (16) is non-degenerated, reflecting

the strategic uncertainty faced by cutoff score-i investors about score-j ones. By definition,

we have ∆σ
i,i = 0 regardless of disclosures. Thus, by (16), a cutoff score-i investor’s belief

about mi is always uniform, invariant with disclosures (up to O (σ)).

Now consider i 6= j, and how a greater ∆σ
1,2 increases the systemic risk expected by a

cutoff score-1 investor. Since the left-hand side of (16) is increasing in ∆σ
1,2, his belief about

m2 resulting from a large ∆σ
1,2 is first-order stochastically dominated by that resulting from

a small ∆σ
1,2. Intuitively, a cutoff score-1 investor believes that the fundamental θ is around

x̂σ1 with high probability. A larger ∆σ
1,2 makes him believe that θ is more likely to be below

x̂σ2 , and thus makes him more pessimistic about the chance that score-2 investors stay. Since

the systemic risk is decreasing in the total mass of stayers, increasing ∆σ
1,2 increases the

systemic risk he expects. The opposite holds for a cutoff score-2 investor. As such, more of

the constant aggregate systemic risk is reallocated to score-1 investors.

Such reallocation of systemic risk happens only when there is strategic uncertainty be-

14By the law of large numbers, this proportion equals the probability that a score-j investor stays.
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tween score-1 and score-2 investors; i.e., before ∆σ
1,2 reaches infinity, for which the reallocation

regions in Figure 1 are named. In this case, the limiting switching cutoffs, x̂1 and x̂2, must

coincide. Once ∆σ
1,2 approaches infinity, from (16) we have that

lim
∆σ

1,2→+∞
Pr
[
m2 ≤ m̃2|x1 = x̂σ1

]
= 1

for any m̃2 ∈ (0, 1]; i.e., a cutoff score-1 investor no longer faces strategic uncertainty about

score-2 investors: he believes that they are running almost surely, and thus that stayers

come only from score-1 investors. The systemic risk that he expects reaches its maximum,∫ θ̄
θ=θ

a(w1m
σ
1 (θ))dmσ

1 (θ) = A(w1)
w1

, and stays there as the limiting switching cutoffs diverge (as

in the separation regions in Figure 1). Meanwhile, a symmetric argument shows that a cutoff

score-2 investor believes that score-1 investors stay almost surely, and thus the systemic risk

he expects stays at its minimum,
∫ θ̄
θ=θ

a(w1 · 1 + w2m
σ
2 (θ))dmσ

2 (θ) = A(1)−A(w1)
1−w1

. In this case,

disclosures affect switching cutoffs only through the direct impact of scores, as in (6) and

(8).

3.4 Assortative Matching is Beneficial Only in Dimension r

We now explain why only disclosures in dimension r can improve the stability of all banks,

captured by a reduction in the average cutoff (17) derived from (11) using Bayesian plausi-

bility constraint (14):

∑
i

wix̂
σ
i =

∑
i

wiri

∫ θ̄

θ=θ

a(Mσ(θ))dmσ
i (θ) + Ec+O (σ) . (17)

Note that its limit as σ → 0 gives rise to the common switching cutoffs (5) and (7) for

disclosures in the respective dimensions, as in the reallocation regions in Figure 1.

Recall from the previous subsection that disclosures in dimension r result in an assor-

tative matching that allocates more systemic risk
∫ θ̄
θ=θ

a(Mσ(θ))dmσ
i (θ) to banks that are

less vulnerable to it (i.e., with lower ri), given their constant population aggregates (i.e.,

constraints (13) and (15)). Through the interaction of systemic vulnerability and expected

systemic risk, represented by the first term of (17), such disclosures reduce the average cutoff

of all investors, and thus improve the stability of all banks.
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Yet, such interaction is absent from disclosures in dimension c, since they do not differ-

entiate banks regarding their systemic vulnerability; i.e., r1 = Er = r2, and do not reduce

the aggregate systemic risk given by (15). Indeed, (17) becomes∑
i

wix̂
σ
i = Er · A (1) + Ec+O (σ) ,

which is independent of the distribution of scores in dimension c, and coincides with (7).

3.5 Additional Remarks

For expositional convenience, this section has focused on binary disclosures with fixed w1 and

w2. In Section 4, where such restrictions are lifted, nondisclosure is still optimal in dimension

c, but optimal disclosures in dimension r exploit the insight in our intuitive illustration to

the extreme: the regulator assigns as many scores as possible, such that for any two scores

ri and rj, we have x̂i = x̂j while ∆i,j , limσ→0 ∆σ
i,j = +∞, unless such practice is restricted

by physical heterogeneity, where full disclosure is optimal.

4 Robust Disclosures

Based on the key messages from the binary-score illustration in Section 3, this section probes

into the design of disclosures in dimensions r and c, respectively, that result in stability

schemes not first-order stochastically dominating those resulting from any other disclosures.

In particular, Section 4.1 solves for the equilibrium given a finite disclosure, and introduces

the concepts of entanglement, separation and adjacency that characterize the strategic re-

lationship between investors of banks receiving different scores. Section 4.2 introduces the

concept of robust disclosures for bank groups, and shows that an optimal disclosure must

be a collection of robust disclosures. We then characterize robust disclosures for arbitrary

bank groups in each dimension. Section 4.3 shows that for any bank group, nondisclosure

is always a robust disclosure in dimension c. Section 4.4 shows that for bank groups with

weak physical heterogeneity, the robust disclosure in dimension r is full disclosure. For bank

groups with strong physical heterogeneity, the robust disclosure assigns as many adjacent

scores as possible. For such bank groups, Section 4.5 constructs a limiting robust disclosure
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with infinitely many scores, and shows that it outperforms all finite disclosures, and the

sequence of robust disclosures converges to it as the number of scores allowed approaches

infinity.

4.1 Equilibrium Given a Disclosure

Consider a disclosure {(ri, ci;wi)}ni=1 with n different scores and associated mass w1, w2, ..., wn,

respectively. Again, it is without loss of generality to focus on symmetric equilibria in which

all investors are playing switching strategies. Let x̂σi be the switching cutoff of score-(ri, ci)

investors for σ > 0, and ∆σ
i,j =

(
x̂σj − x̂σi

)
/σ. Then, the probability that a score-(ri, ci)

investor chooses to stay if the fundamental is θ, mσ
i (θ), is still given by (9); the total mass

of stayers, Mσ(θ), is still given by (10); and x̂σi still satisfies (11).

Proposition 3 characterizes the equilibrium in the limit σ → 0, which generalizes the

equilibrium characterization in Section 3 to any finite disclosure.

Proposition 3. As σ → 0, ∀i, j ∈ {1, 2, . . . , n}, x̂σi → x̂i and ∆σ
i,j → ∆i,j, where {x̂i,∆i,j}ni,j=1

satisfy the system of equations

x̂i = ci + ri

∫ 1

0

a

(
n∑
j=1

wj
[
1− Φ

(
Φ−1(1−mi) + ∆i,j

)])
dmi , (18)

with

∆i,j


= +∞, if x̂j > x̂i

= −∞, if x̂j < x̂i

∈ [−∞,+∞], if x̂j = x̂i

, (19)

and

−∆i,j = ∆j,i =
i∑

k=j+1

∆k−1,k . (20)

Conversely, if {x̂i,∆i,j}ni,j=1 satisfies this system of equations, then investors’ switching cut-

offs converge to {x̂i}ni=1 under the disclosure {(ri, ci;wi)}ni=1 as σ → 0.

As a generalization of (11), equation (18) characterizes investors’ limiting cutoffs. Equa-

tions (19) and (20) follow the definition of ∆σ
i,j. Notably, these conditions are not only

necessary but also sufficient for {x̂i}ni=1 to be the limiting cutoffs. Sufficiency is especially
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important for an information design problem, because it guarantees that the disclosure de-

rived from these conditions can surely induce the desired equilibrium.

Why does the equilibrium operate in this manner? We exemplify the rationale with

two-score disclosures in dimension c (i.e., r1 = Er = r2 but c1 < Ec < c2) for expositional

convenience. A similar argument applies to disclosures in dimension r. For any σ > 0, the

equilibrium cutoffs (x̂σ1 , x̂
σ
2 ) should equalize all cutoff investors’ expected payoffs from staying

to zero, the payoff from running. Then by (11), we obtain

x̂σ1 − Er ·
∫ 1

mσ1 =0

a
(
w1m

σ
1 + w2

[
1− Φ

(
Φ−1(1−mσ

1 ) + ∆σ
1,2

)])
dmσ

1 − c1 = O (σ) (21)

and

x̂σ2 − Er ·
∫ 1

mσ2 =0

a
(
w1

[
1− Φ

(
Φ−1(1−mσ

2 )−∆σ
1,2

)]
+ w2m

σ
2

)
dmσ

2 − c2 = O (σ) , (22)

where the left-hand sides of the equations are the expected payoffs of cutoff score-1 and

cutoff score-2 investors, respectively.

The first term of the expected payoff, x̂σi , corresponds to a score-ci investor’s expectation

of the fundamental θ conditional on receiving his cutoff signal x̂σi . The cutoff investors

of a score that induces a lower cutoff are more pessimistic about the fundamental than

those of a score inducing a higher cutoff. This corresponds to the fundamental channel,

and its magnitude largely depends on the absolute distance between the cutoffs, x̂σ2 − x̂σ1 .

As explained in Section 3.3, the second term of the expected payoff is the systemic risk

expected by a cutoff score-ci investor. The cutoff investors of a score inducing a lower cutoff

expect more systemic risk than those of a score inducing a higher cutoff. This corresponds

to a strategic channel, whose magnitude largely depends on the relative distance between

the cutoffs, ∆σ
1,2 , (x̂σ2 − x̂σ1 )/σ.

First, according to the directions of the two channels, we can readily see that x̂σ1 < x̂σ2 .

Otherwise, compared with a cutoff score-c2 investor, a cutoff score-c1 investor is more opti-

mistic about the fundamental and expects less systemic risk, but his bank is also informa-

tionally stronger (i.e., c1 < c2), rendering his expected payoff strictly higher than a cutoff

score-c2 investor’s. Then, it is impossible to make cutoff investors of both scores indifferent,

contradicting the equilibrium condition.
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Next, let’s think about what happens when σ is small. As x̂σ2 − x̂σ1 increases from 0, ∆σ
1,2

increases quickly and results in substantial difference in the systemic risk expected by the

cutoff investors of the two scores. It is possible that even when x̂σ2 − x̂σ1 is of the order O (σ),

∆σ
1,2 is large so that the cutoff investors of the two scores have very different expectations

of systemic risk. Recall from Section 3.3 that the difference reaches its maximum when ∆σ
1,2

approaches infinity, which corresponds to the case that a cutoff score-1 (score-2) investor

becomes almost certain that score-2 (score-1) investors are running (staying).

If c2 − c1 is not too large, as in the reallocation regions in Figure 1, the maximum dif-

ference in expected systemic risk,
∫ 1

mσ1 =0
a (w1m

σ
1 ) dmσ

1 −
∫ 1

mσ2 =0
a (w1 + w2m

σ
2 ) dmσ

2= A(w1)
w1
−

A(1)−A(w1)
1−w1

, multiplied by the common systemic vulnerability Er is greater than c2−c1. Then

a small x̂σ2 − x̂σ1 (of the order O (σ)) suffices to make up the difference c2− c1 in the expected

payoffs of the investors through the strategic channel. Therefore, we end up with an equilib-

rium in which investors have almost the same cutoff but the systemic risk expected by cutoff

investors is quite different: x̂σ2 − x̂σ1 = O (σ) but ∆σ
1,2 > 0. In this case, only the strategic

channel comes into effect, and the fundamental channel is negligible.

If c2 − c1 is large, as in the separation regions in Figure 1, the strategic channel alone is

not enough to make up the difference c2− c1 in the expected payoffs. Then the fundamental

channel is required to kick in, so that the indifference conditions (21) and (22) can be

maintained. As a result, we end up with an equilibrium in which investors have substantially

different cutoffs: x̂σ2 − x̂σ1 > 0 and ∆σ
1,2 →∞ at vanishing σ. In this case, both channels have

substantial impacts, and the strategic channel is exhausted, which is reflected by ∆1,2 = +∞
as in (19).

Without loss of generality, henceforth we reorder the scores such that ∆i−1,i ≥ 0 for all i.

Based on Proposition 3, we define the concepts of entanglement, separation and adjacency.

Figure 2 illustrates the concepts with a disclosure only in dimension r; i.e., with ci = Ec for

all i.

Definition 1. For a pair of scores (ri, ci) and (rj, cj) with i < j,

� if ∆i,j < +∞, then we must have x̂i = x̂j, and we say scores (ri, ci) and (rj, cj) are

entangled ;

� if x̂j > x̂i, then we say scores (ri, ci) and (rj, cj) are separate;

� if ∆i,j = +∞ and x̂i = x̂j, then we say scores (ri, ci) and (rj, cj) are adjacent.
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Figure 2: Switching Cutoffs Given a Finite Disclosure Rule

Recall from (16) and the discussion above that the strategic uncertainty between investors

of banks receiving scores (ri, ci) and (rj, cj) is determined by (x̂σj − x̂σi )/σ, which converges

to ∆i,j as σ → 0. Entanglement refers to the situation in which the investors of banks

receiving two scores have substantial strategic uncertainty, as for r1 and r6 in Figure 2(b).

Separation refers to the situation in which the investors of banks with the two scores have

distinct cutoffs. Necessarily, there is no strategic uncertainty between them, as for r1 and r10

in Figure 2(b). Adjacency refers to the knife-edge situation in which the investors of banks

with the two scores have the same limiting cutoff but no strategic uncertainty, as for r1 and

r9 in Figure 2(b).

Moreover, entanglement defines an equivalence relation on scores, and divides all investors

into several partition cells: there is strategic uncertainty between the investors of banks with

scores in the same cell, but not between those of banks with scores in different cells. As

illustrated in Figure 2(b), investors in different partition cells share the same switching

cutoff if they are adjacent (as Cell 1 and Cell 2), and have different switching cutoffs if they

are separate (as Cell 1 and Cell 3). Proposition 4 shows that given the partition defined

by entanglement, we can obtain explicit expressions for the switching cutoffs in the limiting

case.

Proposition 4. Given a finite disclosure, the limiting Bayes Nash equilibrium is character-

ized by a consecutive Z−partition of {1, . . . , n}, {{i : pz ≤ i < pz+1} |z = 1, 2, . . . , Z}, with

1 = p1 < · · · < pz < · · · < pZ+1 = n+ 1, such that

� Scores in the same partition cell are all entangled with each other;

� Scores in different partition cells are adjacent or separate; and
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� If i ∈ {pz, pz + 1, · · ·, pz+1 − 1}, then

x̂i =

(
pz+1−1∑
j=pz

wj
rj

)−1 [pz+1−1∑
j=pz

cj
rj
wj + A

(
pz+1−1∑
j=1

wj

)
− A

(
pz−1∑
j=1

wj

)]
, (23)

where A(·) is given by (4). Moreover, {x̂i}ni=1 is a weakly increasing sequence.

4.2 Robust Disclosures

Recall from Section 2.5 that optimal disclosures yield stability schemes not first-order stochas-

tically dominating those resulting from any other feasible disclosure. In this subsection, we

formally introduce the concept of robust disclosures and show that an optimal disclosure

must be a combination of robust disclosures.

As the first step, we restrict our attention to disclosures with no more than n ≥ 2

scores.15 Since the set of n-score disclosures is bounded and closed, optimal disclosures

exist. Now suppose an optimal disclosure induces T ≤ n distinct limiting switching cutoffs

in equilibrium, ranked as θ1 < θ2 < . . . < θT . Then we can regard a disclosure as a collection

of sub-disclosures, each of which is imposed on a group of banks whose investors share the

same limiting switching cutoff. Intuitively, given other investors’ equilibrium behavior, any

sub-disclosure of an optimal disclosure should minimize the corresponding investors’ cutoffs

by and large. Based on this idea, we define (κ, t)-robust disclosures for a bank group and show

that any sub-disclosure of an optimal disclosure must be a certain (κ, t)-robust disclosure for

the bank group.

Definition 2. A bank group (W,Qr, Qc) refers to a mass W of banks, mass Qr of which are

r-type banks and mass Qc of which are c-type banks.

Definition 3. A (κ, t)-robust disclosure in dimension r or c for a bank group (W,Qr, Qc)

is a disclosure with no more than t scores in that dimension for this group, that minimizes

the maximum switching cutoffs of its investors, given that among all banks (of mass 1−W )

outside this group, mass κ are immune from runs and the rest are subject to runs almost

surely.

15Note that n = 1 means no disclosure.
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A robust disclosure is so named for two reasons. First, the bank group as a whole is

immune from runs only if its weakest constituent is immune; i.e., the bank whose investor’s

switching cutoff is the maximum among the whole group. By minimizing this maximum

cutoff, a (κ, t)-robust disclosure maximizes the stability of the weakest constituent, and thus

of the whole group, to adverse fundamental shocks. Second, this approach is in the spirit of

maxmin expected utility theory of Gilboa and Schmeidler (1989), and Hansen and Sargent

(2001) show its connection to the robust-control theory.

Proposition 5. Suppose K
(
·; {Ki, θi}Ti=1

)
is a stability scheme resulting from an n-score

optimal disclosure. Let ti denote the number of scores whose corresponding investors share the

limiting switching cutoff θi. Then for any i, the sub-disclosure for the bank group consisting

of all the banks whose investors share the switching cutoff θi must be the (Ki−1, ti)-robust

disclosure for the group.

Proposition 5 confirms that the regulator’s optimal disclosure must be a combination

of (κ, t)-robust disclosures. To see the intuition, consider an optimal disclosure and the

resulting stability scheme K
(
·; {Ki, θi}Ti=1

)
. Consider the bank group consisting of all the

banks whose investors share the switching cutoff θi, whose mass is Ki − Ki−1. As long

as their signal realizations are in (θi−1,θi+1), which includes θi, these investors think that

among investors outside this bank group, whose mass is 1− (Ki −Ki−1), those with cutoffs

no greater than θi−1, whose mass is Ki−1, stay almost surely, and the rest run almost surely.

This is precisely the condition on the outsiders of this bank group for its (Ki−1, ti)-robust

disclosure. Denote the maximum switching cutoffs under the (Ki−1, ti)-robust disclosure by

θ′i. By definition, we have θ′i ≤ θi. But the optimality of the original disclosure implies

that θ′i = θi. Otherwise, we can replace the original sub-disclosure for this bank group

with its (Ki−1, ti)-robust disclosure, without changing the original sub-disclosures for its

outsiders. It can be shown that under this alternative disclosure, investors of this bank

group would have switching cutoffs no more than θ′i, while other investors’ switching cutoffs

do not increase relative to their original levels. This results in a stability scheme that is first-

order stochastically dominated by K
(
·; {Kj, θj}Tj=1

)
, violating the optimality of the original

disclosure.

In the rest of the section, we derive (κ, t)-robust disclosures in dimensions c and r re-
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spectively for t ≥ 2.16 Since the mass of stayers outside the bank group is fixed at κ, we

can equivalently consider the investors of the given bank group (W,Qr, Qc) as playing a

coordination game only among themselves, where the systemic risk they face when the mass

of stayers among them is l is

aκ(l) , a(l + κ)

instead of a(l). We then define

Aκ(l) ,
∫ l

0

aκ(w)dw = A (l + κ)− A (κ) .

By definition, Aκ(0) = 0. Thus, the equilibrium of the game is still characterized by Propo-

sitions 3 and 4, with a(l) and A(l) replaced by aκ(l) and Aκ(l), respectively.

4.3 Robust Disclosures in Dimension c

First, we consider disclosures in dimension c, where ri = Er for all i. As discussed in Section

3 and implied by (23), the average switching cutoff of the whole bank group is not affected

by disclosures in dimension c, so the maximum of the switching cutoffs is minimized as long

as all investors in the bank group have the same switching cutoff. This is because holding

constant the expected idiosyncratic cost of the group, [Qc·c+(W−Qc)·c̄]
W

, the resulting assortative

matching, which reallocates more of the constant aggregate systemic risk, Aκ (W ), to banks

believed to have lower idiosyncratic costs, is not conducive to mitigating systemic runs.

Proposition 6. Nondisclosure is a (κ, t)-robust disclosure in dimension c for any bank group

(W,Qr, Qc), in which all investors share the switching cutoff

x̂c (W,Qc, κ) =
[Qc · c+ (W −Qc) · c̄]

W
+ Er · Aκ (W )

W
. (24)

4.4 Robust Disclosures in Dimension r

Now we consider disclosures in dimension r, where ci = Ec for all i. In the two-score setup in

Section 3, the maximum of the two cutoffs reaches its minimum when informational hetero-

geneity in dimension r is maximized, provided that the two cutoffs coincide. This is because

16Note that t = 1 means no disclosure.

26



of beneficial assortative matching: holding constant the expected systemic vulnerability of

the bank group, more of the constant aggregate systemic risk is reallocated to investors of

banks that are believed to be less vulnerable to systemic risk. This improves the stability

of all banks. We show in this subsection that this conclusion also holds for the design of

a (κ, t)-robust disclosure. For notational convenience, we suppress Qc in (W,Qr, Qc) in the

rest of this section.

As discussed in Section 3, if the heterogeneity between two bank scores is sufficiently

large, their investors will have different switching cutoffs. Then, reducing the heterogeneity

can always lower the maximum of the switching cutoffs until they become equal. Proposition

7 confirms that this finding holds generally.

Proposition 7. In a (κ, t)-robust disclosure in dimension r, all scores must be either en-

tangled or adjacent to each other.

According to Proposition 7, we focus on disclosures that result in the same switching

cutoffs for all investors, and robust disclosures are those that minimize the common switching

cutoff. By (23), the common switching cutoff is

x̂i = Ec+

(∑
j

wj
rj

)−1

· Aκ

(∑
j

wj

)
,

which generalizes (5). As an integral over aκ(·) > 0, Aκ

(∑
j wj

)
> 0 and thus x̂i is

strictly increasing in
(∑

j
wj
rj

)−1

. Lemma 1 establishes that when two scores are entangled,

marginally increasing informational heterogeneity in dimension r with a mean-preserving

spread of scores reduces
(∑

j
wj
rj

)−1

and thus x̂i. This captures the essence of the beneficial

assortative matching discussed in Section 3.3.

Lemma 1. Suppose r′i ≤ ri ≤ rj ≤ r′j, wiri + wjrj = w′ir
′
i + w′jr

′
j, and wi + wj = w′i + w′j.

Then we have
wi
ri

+
wj
rj
≤ w′i

r′i
+
w′j
r′j

,

and the equality holds if and only if r′i = ri and r′j = rj.

Proof. The proof is straightforward from the convexity of f(r) = 1/r in (0,+∞).
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Hence, a (κ, t)-robust disclosure should maximize the heterogeneity in dimension r, pro-

vided that all investors have the same switching cutoff. Yet, the extent of such maximization

is restricted by the original physical heterogeneity among banks, as captured by r̄/r. To cap-

ture this innate constraint, we define strong/weak κ-heterogeneity in dimension r.

Definition 4. A bank group (W,Qr) has weak κ-heterogeneity if

r/r ≤ Aκ(Q
r)

Qr

W −Qr

Aκ(W )− Aκ(Qr)
.

Otherwise, it has strong κ-heterogeneity.

If a bank group (W,Qr) has weak κ-heterogeneity, then with mass κ of banks outside the

group immune from runs almost surely, all investors in the group share the same switching

cutoff, even if the informational heterogeneity is maximized with full disclosure. Thus,

Proposition 8. If a bank group (W,Qr) has weak κ-heterogeneity, then its (κ, t)-robust

disclosure in dimension r is full disclosure.

The rest of this section focuses on (κ, t)-robust disclosures for bank groups with strong

κ-heterogeneity. Proposition 9 characterizes their key properties.

Proposition 9. For any bank group with strong κ-heterogeneity, all scores of a (κ, t)-robust

disclosure in dimension r must be adjacent to each other. Moreover, the resulting common

switching cutoff is strictly decreasing in t.

The first property reflects two considerations. By Lemma 1, we want to maximize in-

formational heterogeneity in dimension r. However, due to the strong κ-heterogeneity, too

much informational heterogeneity will make scores separate, which is not desirable according

to Proposition 7. Therefore, we stop at adjacency, the knife-edge case that investors’ cutoffs

are about to diverge.

The second property implies that allowing for more scores always reduces the common

switching cutoff induced by a robust disclosure. To see this, note that for any (κ, t)-robust

disclosure, we can regard one of its scores as two scores with the same mass but forced

to coincide by the constraint on total number of scores. If one more score is allowed, the

regulator can at least make these two scores also adjacent, which further reduces the common

switching cutoff.
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Figure 3: Limiting robust disclosures

4.5 The Limiting Robust Disclosure for Bank Groups with Strong

κ-heterogeneity

By Proposition 9, for a bank group with strong κ-heterogeneity, the regulator would prefer

to implement a sub-disclosure with as many scores as possible to lower the common cutoff.

What if she is allowed to assign as many scores as she likes? In this subsection, we construct

the limiting robust disclosure and study its properties.

For a bank group (W,Qr), denote the candidate for the limit of its (κ, t)-robust disclosure

as t→ +∞ by a function

Ω(·;W,Qr, κ) : [r, r]→ [0,W ] ,

where Ω(r;W,Qr, κ) represents the mass of banks whose scores are less than or equal to r.

Figure 3 illustrates its structure with Er = 2.5, Ec = 0, and a(l) = 2− l.
The essence of adjancency is the maximization of informational heterogeneity under the

constraint of a common switching cutoff. Consider first the situation where r is so low and r̄

is so high that they do not restrain the regulator through Bayesian plausibility from pushing

such maximization to the extreme, as illustrated in Figure 3(a). First, such maximization

reduces the mass of banks sharing the same score to zero, so that Ω(·;W,Qr, κ) is contin-

uous. Otherwise, further reduction of the common switching cutoff is feasible by replacing
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a score of positive mass with its mean-preserving spread. Second, such maximization also

eliminates the strategic uncertainty faced by all investors: when a score-r investor is indif-

ferent, he believes that among investors in (W,Qr), those with scores r′ < r, whose mass is

Ω(r;W,Qr, κ), stays almost surely, and the others run almost surely, so that his switching

cutoff, which he shares with all investors due to adjacency of scores, is

x̂r (W,Qr, κ) ≡ Ec+ r · aκ (Ω(r;W,Qr, κ)) . (25)

In this situation, the right-hand side of (25) must be constant over all r in the support of

Ω,17 and we refer to (25) as the common-switching-cutoff constraint. Lastly, the total mass

of banks and the mass of type-r banks given by Ω must be consistent with (W,Qr); i.e.,

Ω(r;W,Qr, κ) = W and
∫ r̄
r=r

r · dΩ(r;W,Qr, κ) = r ·Qr + r̄ · [W −Qr]. There is a unique Ω

satisfying all these properties. To avoid distracting readers with technicalities, we relegate

its detailed construction to Section A of the Appendix.

Now consider the situation where r̄ is low so that it restrains the regulator from further

spreading scores beyond it, as illustrated in Figure 3(b). In this situation, a positive mass has

to be “piled” at r̄. Note that there is a gap between r̄ and the supremum of the continuous

component of the distribution, r+. Strategic complementarity between all investors and the

strategic uncertainty between investors of these score-r̄ banks leads to the isolation of these

banks from the rest. To see this, while both a cutoff score-r+ investor and a cutoff score-r̄

investor believe that non score-r̄ investors are staying almost surely, the cutoff score-r+ in-

vestor believes that all score-r̄ investors are running almost surely, while the cutoff score-r̄

investor believes that the proportion of score-r̄ investors who stay is uniformly distributed in

[0, 1]. Thus, as long as the mass piled at r̄ is positive, there is a non-infinitesimal difference in

the systemic risk that they expect, and the common-switching-cutoff constraint (25) requires

a gap between r+ and r̄. Similar phenomena occur when only r is restrictive, as in Figure

3(c), and when both r and r̄ are restrictive, as in Figure 3(d). When r and r̄ become so

restrictive that (W,Qr) has weak κ-heterogeneity, the continuous component of the distribu-

tion vanishes, consistent with Proposition 8 that full disclosure is the (κ, t)-robust disclosure

for (W,Qr) in dimension r for all t.

Proposition 10. Consider disclosures in dimension r for any bank group (W,Qr) with strong

17In general, (25) holds for all scores of mass zero in limiting robust disclosures.
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κ-heterogeneity.

� x̂r (W,Qr, κ) is the infimum of the switching cutoffs of (κ, t)-robust disclosures in di-

mension r for all t ≥ 1.

� (κ, t)-robust disclosures in dimension r converge to Ω(·;W,Qr, κ) as t → ∞, in the

sense that the distance between their quantile functions converges to 0 in the L1-norm.

Proposition 10 provides two pieces of important information. First, as the number of

scores t goes to infinity, the common cutoff of (κ, t)-robust disclosures converges downward

to x̂r (W,Qr, κ). Hence, x̂r (W,Qr, κ) can be considered as the (asymptotically) lowest cutoff

the regulator can achieve with sufficient scores. Second, Ω(·;W,Qr, κ) is indeed the limit of

(κ, t)-robust disclosures as the number of scores t goes to infinity.

It is worth noting that although Ω(·;W,Qr, κ) involves infinitely many scores and thus is

not feasible in a practical design problem, it still provides a meaningful benchmark. First,

for sufficiently large t, (κ, t)-robust disclosures are arbitrarily close to Ω(·;W,Qr, κ). Sec-

ond, Ω(·;W,Qr, κ) can be explicitly characterized, so that it serves as a tractable tool that

enables us to study the nature of optimal disclosures with many scores. Therefore, we refer

to Ω(·;W,Qr, κ) as the κ-robust disclosure for the bank group (W,Qr). In addition, the

notion of a κ-robust disclosure can also be extended to disclosures in dimension c (which

is nondisclosure, Proposition 6), and to those in dimension r for bank groups with weak

κ-heterogeneity (which is full disclosure, Proposition 8). In the application in Section 5, we

characterize optimal disclosures based on κ-robust disclosures in all these cases.

5 An Application: Public Disclosure of Stress-Test Re-

sults

Since the 2007-08 financial crisis, a vigorous debate has arisen concerning whether and how

the regulator should disclose the results of the stress tests of individual financial institutions.

The essence of this debate is the design of optimal public disclosure of bank-specific informa-

tion that mitigates systemic bank runs. This section complements existing discussions with

two novel implications due to the presence of systemic risk. Theoretically, this section also

demonstrates the critical role of robust disclosures developed in Section 4 in the construction

of optimal disclosures, given a complete preference of the regulator that respects the partial
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order in Section 2.5.

5.1 Optimal Disclosures

In practice, the regulator is concerned about whether banks are able to withstand negative

economic shocks. As manifested by the design of stress tests, the regulator often focuses on

hypothetical adverse scenarios and makes policies accordingly to improve financial stability

in these scenarios. Motivated by this observation, we assume that the regulator’s objective is

to maximize the mass of banks immune from runs in a hypothetical adverse scenario, where

the fundamental θ equals an exogenous θ̂.

Proposition 11. Consider optimal disclosures in dimension r. Let x̂r be given by (25).

Suppose r/r > A(qr)
qr

1−qr
A(1)−A(qr)

, where

� If θ̂ ≥ x̂r (qr, qr, 0), a mass 1−W
(
θ̂, qr

)
of type-r banks are fully revealed and subject to

runs at θ̂ while the remaining banks are revealed as specified by their 0-robust disclosure

and are immune from runs at θ̂. Here, W
(
θ̂, qr

)
is the maximum W in [qr, 1] such

that x̂r (W, qr, 0) ≤ θ̂.

� If θ̂ < x̂r (qr, qr, 0), no bank is immune from runs at θ̂ regardless of disclosures.

Suppose r/r ≤ A(qr)
qr

1−qr
A(1)−A(qr)

. All banks are revealed as specified by their 0-robust disclosure.

If θ̂ ≥ x̂r (1, qr, 0), they are all immune from runs at θ̂; otherwise, they are all subject to

runs at θ̂.

Again, we adopt the law of large numbers convention18 so that qr is also the mass of type-

r banks in the system. When physical heterogeneity in systemic vulnerabilities is strong,

investors of different banks may have different switching cutoffs. This makes room for the

regulator to reduce the cutoffs of some banks and prevent runs on them at the cost of

increasing the cutoffs of the others through disclosures. Since the regulator cares only about

the mass of banks immune from runs at θ̂, all sacrificed banks must be physically weak and

fully revealed, and the corresponding 0-robust disclosure is made to “preserved” banks to

maximize their joint resilience. When physical heterogeneity in systemic vulnerabilites is

weak, all investors always share the same cutoff in equilibrium, so in any state, banks are

either all immune from or all subject to runs. As implied by Proposition 5, the 0-robust

18See Footnote 12.
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disclosure for all banks maximizes their resilience. Proposition 12 follows an analogous logic.

Again, by the law of large numbers convention, qc is also the mass of type-c banks in the

system.

Proposition 12. Consider optimal disclosures in dimension c. Let x̂c be given by (24).

Suppose c− c >
[
A(qc)
qc
− A(1)−A(qc)

1−qc

]
Er.

� If θ̂ ≥ x̂c (qc, qc, 0), a mass 1−W
(
θ̂, qc

)
of type-c banks are fully revealed and subject to

runs at θ̂ while the remaining banks are revealed as specified by their 0-robust disclosure

and immune from runs at θ̂. Here, W
(
θ̂, qc

)
is the maximum W in [qc, 1] such that

x̂c (W, qc, 0) ≤ θ̂.

� If θ̂ < x̂c (qc, qc, 0), no bank is immune from runs at θ̂ regardless of disclosures.

Suppose c − c ≤
[
A(qc)
qc
− A(1)−A(qc)

1−qc

]
Er. All banks are revealed as specified by their 0-robust

disclosure. If θ̂ ≥ x̂c (1, qc, 0), they are all immune from runs at θ̂; otherwise, they are all

subject to runs at θ̂.

Figures 419 and 520 illustrate how the respective optimal disclosures in dimensions r and

c evolve with the deterioration of the average quality of the banking system, represented

by a reduction in qr or qc. Banks immune from runs are indicated in blue, whose mass is

represented by w, and those subject to runs are denoted in red.

5.2 Implications of Systemic Risk

A key addition of our model to the standard Bayesian persuasion model is systemic risk

and the consequent strategic complementarity between the investors of different banks. This

subsection stipulates two novel implications of this addition.

First, the optimal disclosure of systemic vulnerability differs qualitatively from that of

idiosyncratic factors (i.e., “cost”) for banks immune from runs. Recall from Section 3 that

the former reallocates more of the constant aggregate systemic risk to the banks known to be

less vulnerable to it, while such beneficial assortative matching is absent in the latter. As a

result, the former maximally differentiates banks immune from runs provided that they are

19For all panels, (r, r) = (2, 3), Ec = 0, a(l) = 2− l, and r/r > A(qr)
qr

1−qr
A(1)−A(qr) is satisfied.

20For all panels, (c, c) = (0, 2), Er = 2.5, a(l) = 2 − l, θ̂ = 4.75and c − c >
[
A(qc)
qc −

A(1)−A(qc)
1−qc

]
Er is

satisfied.
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Figure 4: Optimal disclosures in dimension r
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Figure 5: Optimal disclosures in dimension c
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Figure 6: The minimum mass of type-c banks

equally resilient (see Propositions 7-9), while the latter does not entail such differentiation

(see Proposition 6). This distinction is driven by the systemic risk in the banking system: if

systemic risk is absent, so is the assortative matching, and differentiation of preserved banks

is no longer beneficial, as in a standard Bayesian persuasion model.

Second, when the quality of the banking system deteriorates, the regulator may have to

face a sudden run on a huge mass of banks rather than gradually abandoning weak banks.

That is, the mass w of banks immune from runs under the optimal disclosure may experience

a negative discontinuous jump from 1, as the average quality of the whole banking system,

measured by qr or qc, falls below a critical level that could protect all banks from runs. (The

corresponding thresholds in Figures 4 and 5 are qr= 0.5 and qc= 0.5, respectively.)

Figure 6 illustrates the role of systemic risk in shaping this implication with disclosures

in dimension c. To figure out the maximum mass w of banks that can be immune from runs

at θ̂ given qc, and subsequently how a fall in qc affects w, we first consider the following

question: as a candidate for the desired group of immune banks, suppose banks outside a

group of mass W are run almost surely at θ̂ (just like banks outside the desired group), what

is the minimum mass Qc of physically strong (i.e., type-c) banks required in the group for it

to be immune from runs, given θ̂?21 The answer is given by (24), with κ and x̂c (W,Qc, κ)

fixed at 0 and θ̂, respectively. The black solid curves plot Qc against W accordingly, given

the same θ̂ = 4.5 but different systemic risk functions a(·), respectively.22

21That is, to guarantee that the common switching cutoff x̂c resulting from its 0-robust disclosure is no
greater than θ̂.

22For the three panels, we scale up a (·) while keeping the expected systemic vulnerability equal to Er = 2.5.
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Figure 6(a) depicts the benchmark without systemic risk by fixing a(·) ≡ 0. There, a

constant average quality of the bank group, and thus a constant Qc/W , are required for the

group to be preserved given the same θ̂. Thus, the black solid curve is a straight line passing

through the origin. To keep the whole system from runs, Qc must reach the critical level qc0

indicated by the red dot-dashed line. The total mass qc of physically strong banks in the

system determines the maximum mass w of immune banks through the constraint Qc ≤ qc.

If qc>qc0, the constraint slacks and w = 1. Now consider a fall in qc from qc0 to qc1, as shown

by the downward shift of the horizontal dot-dashed line indicated by the green arrow. The

constraint Qc ≤ qc binds in the process, and the mass w of immune banks adjust linearly

from w0 = 1 down to w1, the level corresponding to Qc = qc1 on the black solid line. Thus,

without systemic risk, there is no discontinuous jump in w.

Systemic risk may break the monotonic relation between Qc and W , as illustrated in

Figures 6(b) and (c): since banks outside the group are run almost surely at θ̂, a reduction

in W (e.g., from 1 to 0.9 in both figures) raises the systemic risk expected by all investors

in the group at θ̂, and requires a higher Qc to compensate. This results in a discontinuous

jump in w following a fall in qc from the critical level qc0 analogous to that in Figure 6(a).

In Figure 6(b) in this process, even if the magnitude of the fall in qc is infinitesimal, the

resulting reduction in the mass w of immune banks, w0 − w1, is greater than 1− 0.4 = 0.6!

When systemic risk is sufficiently high, another constraint by construction, Qc ≤ W , further

worsens the situation. In all panels, this constraint means that the black solid curve cannot

go beyond the blue dashed 45-degree line: Qc = W . In Figure 6(c), this is violated for

low values of W corresponding to the black dotted curve segment. For these values, even

if Qc =W , the runs on banks (of mass 1 −W ) outside this group raises the systemic risk

expected by investors in this group by so much, that their switching cutoff cannot be reduced

to θ̂. This implies a downward jump in w of magnitude 1: once qc falls below the critical

level qc0, no bank is immune from runs regardless of disclosures.

To ensure that the same θ̂ = 4.5 is feasible for disclosures under a uniformly higher systemic risk a(·), we

lower (c, c) accordingly. Specifically, we pick c = 5− 1.5× Er × a(l)
2−l and c = c− 2.
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6 Discussion

This section discusses the robustness of our results to the relaxation of two assumptions.

Mathematical details are relegated to the Internet Appendix due to length limitations.

In our baseline model, banks’ systemic vulnerabities and idiosyncratic costs are assumed

to be independent, allowing the regulator to disclose information in only one dimension.

This facilitates our analysis of the different impact of disclosures in different dimensions. In

reality, different bank-specific information could be correlated, so that a disclosure in one

dimension automatically reveals information in the other. In our first robustness check, we

allow for correlation between bank types in different dimensions. We obtain that if types

in different dimensions are not too negatively correlated, or if allocation of systemic risk is

sufficiently important,23 disclosures in dimension r can still be beneficial due to the same

mechanism of assortative matching as in the baseline model, and disclosures in dimension c

affect investors’ strategies only through the information they reveal in dimension r.

In our baseline model, investors’ priors are assumed to be uninformative about bank-

specific information in both dimensions c and r. In reality, investors may have information

sources about their banks other than the regulator’s disclosures. In our second robustness

check, we consider the possibility of informative common priors in dimensions r and c,

and show that disclosures in dimension c can only hurt the stability of a bank group (i.e.,

increase the maximum of its investors’ switching cutoffs), while there is always a disclosure

in dimension r that improves its stability. In this sense, our main results are robust to this

possibility.

7 Conclusion

This paper studies how the disclosure of bank-specific information can mitigate systemic

bank runs through a novel channel: the reallocation of systemic risk across banks. We find

that regardless of disclosure, the aggregate systemic risk expected by all banks is constant,

and that the disclosure of bank-specific information differentiates banks by their resilience

to adverse shocks, and results in an assortative matching: it reallocates systemic risk from

weak banks to strong ones. However, the disclosure of different kinds of bank-specific infor-

23A precise if-and-only-if condition is given in the Internet Appendix.
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mation have qualitatively different impacts. The disclosure of information concerning banks’

vulnerability to systemic risk could improve the stability of all banks, because it reallocates

more of the constant aggregate systemic risk to banks that are believed to be less vulnera-

ble to such risk. However, the resulting assortative matching from the disclosure of banks’

idiosyncratic factors is not conducive to mitigating systemic bank runs.

Throughout the paper, we have focused on disclosures in either dimension, but not both.

This enables us to highlight the dependence of optimal disclosure on the nature of the

information, which is ignored in the literature. Once the joint design of disclosures in both

dimensions with more than two scores is allowed, in addition to the values of scores in

each dimension, the regulator can flexibly design the correlation structure between them.

While interesting, this would significantly complicate the analysis, as exemplified by the

binary-score setup in Section C.1.2 of the Internet Appendix. We leave this promising but

technically challenging work for future research.
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Appendix

A The Construction of Limiting κ-Robust Disclosures

We take two steps to construct the limiting robust disclosure Ω(r;W,Qr, κ). In Step 1,

for any bank group with a total mass W of banks, we construct an auxiliary disclosure

Ω̃(r;W, X̂, κ) that takes the following form: there is a continuous component with support

[r−, r+] ⊂ [r, r̄], a mass m ≥ 0 piled at r, and a mass m̄ ≥ 0 at r̄, such that all scores

are adjacent to each other and their common cutoff is X̂. In Step 2, we show that there

exists a unique value of X̂, denoted by x̂r (W,Qr, κ), such that the total mass Q̃ of type-r

banks implied by this auxiliary disclosure is exactly Qr. We then define Ω(r;W,Qr, κ) as

Ω̃(r;W, x̂r (W,Qr, κ) , κ).
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A.1 Constructing auxiliary disclosures

Given the total mass W of banks, if X̂ ∈
[
rAκ(W )

W
+ Ec, rAκ(W )

W
+ Ec

]
, we say X̂ is a feasible

switching cutoff.24 Define a distribution of scores r ∈ [r, r̄], whose cumulative distribution

function is Ω̃(·;W, X̂, κ): [r, r̄]→ [0,W ] such that

Ω̃(r;W, X̂, κ) =


m, if r ∈ (r, r−)

m+
∫ r
r−
w(τ)dτ, if r ∈ (r−, r+]

m+
∫ r+
r−
w(τ)dτ, if r ∈ (r+, r)

m+
∫ r+
r−
w(τ)dτ +m, if r = r

, (26)

where

m

{
= 0, if X̂ ≥ Ec+ raκ(0)

satisfies X̂ = Ec+ rAκ(m)
m

if X̂ < Ec+ raκ(0)
,

m

{
= 0, if X̂ ≤ Ec+ raκ(W )

satisfies X̂ = Ec+ rAκ(W )−Aκ(W−m)
m

if X̂ > Ec+ raκ(W )
,

and w(·) is such that for any r ∈ [r−, r+],

X̂ = Ec+ r · aκ
(
m+

∫ r

r−

w(τ)dτ

)
, (27)

and that the total mass

Ω̃(r̄;W, X̂, κ) = m+

∫ r+

r−

w(τ)dτ +m = W.

The construction of Ω̃(·;W, X̂, κ) ensures that all different scores are adjacent. To see

this, first observe that by construction, all investors share the same switching cutoff X̂.

In addition, equation (27) indicates that any investor whose score is in the “continuous

component” [r−, r+] of the distribution Ω̃(·;W, X̂, κ) faces no strategic uncertainty. That is,

when he is indifferent between running and staying, he believes that stayers exactly consist

of investors with scores lower than his own, whose mass is m+
∫ r
r−
w(τ)dτ .

24Only switching cutoffs in this range are feasible. Given the total mass W of the bank group, if all banks

are of type-r, then the common switching cutoff of their investors is rAκ(W )
W +Ec, which is the lowest feasible

target switching cutoff. Similarly, r̄Aκ(W )
W + Ec is the highest feasible target switching cutoff.
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Moreover, physical heterogeneity may restrict informational heterogeneity; i.e., scores

cannot go beyond [r, r̄]. If r is so high that X̂ < Ec + raκ(0), some mass out of W has to

be piled at r = r. These are type-r banks whose type is fully revealed and whose mass m is

such that their investors face strategic uncertainty only among themselves. The high value

of r impedes the annihilation of such uncertainty.

Similarly, consider the situation where r̄ is too low for a given W (recall that aκ (·) is

decreasing), such that X̂ > Ec+ raκ(W ). While assigning higher scores to banks hurts their

investors’ confidence, this adverse effect is dominated by the beneficial assortative matching,

given the large mass of banks to be dealt with. So the regulator would “spread” the score

beyond r̄ if feasible, which is impeded by the low value of r̄. Again, the mass m̄ piled at

r̄ (consisting of type-r̄ banks whose type is fully revealed) is such that their investors face

strategic uncertainty only among themselves.

A.2 Determining the Common Cutoff

For any W ∈ [0, 1] and any feasible switching cutoff X̂, the distribution Ω̃(r;W, X̂, κ) im-

plies a mass of type-r banks Q̃
(
X̂;W,κ

)
,

r̄W−
∫ r̄
r=r r·dΩ̃(r;W,X̂,κ)

r̄−r . The auxiliary disclosure

constructed in Step 1 is continuous in nature. To enhance the stability of the bank group

with given total mass W ; i.e., to induce a lower X̂, the auxiliary disclosure has to assign

more scores with low r, which requires a larger mass of type-r banks out of the fixed total

mass W . This monotonicity further implies that there is a unique value of X̂, denoted by

x̂r (W,Qr, κ), that is consistent with the mass Qr of type-r banks in the bank group (W,Qr).

Lemma 2. Q̃
(
X̂;W,κ

)
is continuous and strictly decreasing in X̂. Thus, there exists a

unique x̂r (W,Qr, κ) such that Q̃ (x̂r (W,Qr, κ) ;W,κ) = Qr. In addition, x̂r (W,Qr, κ) is

continuous and decreasing in Qr.

B Proofs

Proposition 1 is a direct corollary of Proposition 4 proved later, and Proposition 2 is

straightforward from Proposition 1. Proofs of all the lemmas introduced in the Appendix

are relegated to the Internet Appendix.
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Proof of Proposition 3

We take three steps to prove the proposition. The first two steps are summarized by the

following two lemmas.

Lemma 3. For any infinite sequence {σm}+∞
m=1 of σ that converges to 0, there exists an

infinite subsequence {σ4
m}+∞

m=1 such that all x̂
σ4
m
i and ∆

σ4
m
i−1,i either converge to finite numbers

or go to infinity. Moreover, their limits {(x̂0
i ,∆

0
j,i)}j,i∈{1,2,...,n} satisfy the equation system

consisting of (18), (19), and (20).

Lemma 4. The equation system consisting of (18), (19), and (20) has a unique solution.

Based on the two lemmas, we prove that the equation system is the necessary and suffi-

cient condition for {x̂i}ni=1 to be the limits of the cutoffs as σ → 0.

Suppose as σ → 0, {x̂σi }ni=1 do not converge to {x̂0
i }ni=1. That means, there exists ε and

an infinite sequence {σm}+∞
m=1 such that maxi |x̂σmi − x̂0

i | > ε. However, according to Part I

and Part II, there exists an infinite subsequence {σ4
m}+∞

m=1 of {σm}+∞
m=1 such that {x̂σ

4
m
i }ni=1

converges to {x̂0
i }ni=1. Contradiction! Therefore, as σ → 0, {x̂σi }ni=1 converge to {x̂0

i }ni=1.

On the other hand, if {x̂i}ni=1 satisfies the equation system, when the disclosure is imple-

mented, as σ → 0, {x̂σi }ni=1 must converge to the solution of the equation system, which is

uniquely {x̂i}ni=1.

Proof of Proposition 4

For any z, the scores in the partition cell [pz, pz+1) all have the same cutoff in the limiting

case. Denote it by x̂(z). Then for any i ∈ [pz, pz+1),

x̂(z) = Ec+ ri

∫ 1

0

a

 ∑
{j:∆j,i=+∞}

wj +
∑

{j:|∆i,j |<∞}

wj
[
1− Φ

(
Φ−1(1−mi)−∆j,i

)] dmi

= Ec+ ri

∫ 1

0

a

(
pz−1∑
j=1

wj +

pz+1−1∑
j=pz

wj
[
1− Φ

(
Φ−1(1−mi)−∆j,i

)])
dmi,

so

x̂(z)− Ec
ri

=

∫ 1

0

a

(
pz−1∑
j=1

wj +

pz+1−1∑
j=pz

wj
[
1− Φ

(
Φ−1(1−mi)−∆j,i

)])
dmi.
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For any real number µi, we can replace mi with 1− Φ (µi − y) and write the right-hand

side as an integral with respect to y over (−∞,+∞), i.e.,

x̂(z)− Ec
ri

=

∫ +∞

y=−∞
a

(
pz−1∑
j=1

wj +

pz+1−1∑
j=pz

wj
[
1− Φ

(
Φ−1 (Φ (µi − y))−∆j,i

)])
d [1− Φ (µi − y)]

=

∫ +∞

y=−∞
a

(
pz−1∑
j=1

wj +

pz+1−1∑
j=pz

wj [1− Φ (µi − y −∆j,i)]

)
d [1− Φ (µi − y)] (28)

Specifically, due to Equation (20), we can pick {µi}ni=1 such that µj − µi = ∆i,j.
Multiplying Equation (28) by wj and sum over [pz, pz+1), we obtain

pz+1−1∑
i=pz

x̂(z)− Ec
ri

wi =

pz+1−1∑
i=pz

∫ +∞

y=−∞
a

pz−1∑
j=1

wj +

pz+1−1∑
j=pz

wj [1− Φ (µi − y −∆j,i)]

 d [wi − wiΦ (µi − y)]

=

∫ +∞

y=−∞
a

pz−1∑
j=1

wj +

pz+1−1∑
j=pz

wj [1− Φ (µj − y)]

 d


pz+1−1∑
i=pz

[wi − wiΦ (µi − y)]


=

∫ ∑pz+1−1

i=pz
wi

ω=0

a

pz−1∑
j=1

wj + ω

 dω = A

pz+1−1∑
j=1

wj

−A
pz−1∑

j=1

wj

 .

so

x̂(z) = Ec+

(
pz+1−1∑
j=pz

wj
rj

)−1 [
A

(
pz+1−1∑
j=1

wj

)
− A

(
pz−1∑
j=1

wj

)]
.

Proof of Proposition 5

Suppose the proposition does not hold. Specifically, the sub-disclosure for the bank group

whose investors have the switching cutoff θk is not the (Kk−1, tk)-robust disclosure for the

group. Notice that the maximum of the switching cutoffs is also θk. Denote the maximum

of the switching cutoffs under the (Kk−1, tk)-robust disclosure by x̂(Kk−1,tk). Then by the

definition, x̂(Kk−1,tk) < θk. We show that if sub-disclosure is replaced with the (Kk−1, tk)-

robust disclosure for the group, all investors have weakly lower cutoffs, and a positive mass

of them have strictly lower cutoffs.

Part I: investors with cutoffs smaller than θk under the original disclosure.

Suppose these investors correspond to the first m scores. The investors’ cutoffs are
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{x̂i,∆i,j}mj,i=1 under the original disclosure and {x̂′i,∆′i,j}mj,i=1 under the new disclosure re-

spectively. Since ∆i,j = +∞ for i ≤ m and j > m, {x̂i}mi=1 satisfies

x̂i = ci + ri

∫ 1

0

a

(
m∑
j=1

wj
[
1− Φ

(
Φ−1(1−mi)−∆j,i

)])
dmi.

Suppose there exists i ≤ m such that x̂′i > x̂i and such i constitutes the set T = {τ1, τ2, . . . , τL}
where τ1 < τ2 . . . < τL. Consider i ∈ T . There must exist j ≤ m such that ∆′j,i < ∆j,i;

otherwise, x̂′i ≤ x̂i. Let ξ(i) be the smallest j such that ∆′j,i < ∆j,i.

Note that for j /∈ T , since x̂′j ≤ x̂j and x̂′i > x̂i, ∆′j,i ≥ ∆j,i. Hence, ξ(i) ∈ T . Since

ξ(τ1) ∈ T , ξ(τ1) > τ1. Consider ξ(2)(τ1) = ξ(ξ(τ1)). It must be in T . By the definition of

ξ(τ1), for any j ∈ T and j < ξ(τ1), ∆′j,τ1 ≥ ∆j,τ1 , and ∆′ξ(τ1),τ1
< ∆ξ(τ1),τ1 . So, for these j,

∆′j,ξ(τ1) = ∆′j,τ1 −∆′ξ(τ1),τ1
> ∆j,τ1 −∆ξ(τ1),τ1 = ∆j,ξ(τ1),

which implies ξ(ξ(τ1)) > ξ(τ1). Iterating the procedure, we end up with an infinite sequence

{ξ(j)(τ1)}+∞
j=1 in T . This is impossible because T is a finite set. Therefore, for i ≤ m, x̂′i ≤ x̂i.

Part II: investors with cutoffs equal to θk under the original disclosure.

Denote the (Kk−1, tk)-robust disclosure for the group by {(r′i, c′i, w′i)}
m+tk
i=m+1. By the defi-

nition of the (Kk−1, tk)-robust disclosure and Kk−1 =
∑m

j=1 wj, there exists {x̂′′i ,∆′′i,j}
m+tk
i,j=m+1

such that x̂′′i ≤ x̂(Kk−1,tk), where

x̂′′i = c′i + r′i

∫ 1

0

a

(
m∑
j=1

wj +

m+tk∑
j=m+1

w′j
[
1− Φ

(
Φ−1(1−mi)−∆′′j,i

)])
dmi,

∆′′i−1,i


= +∞, if x̂′′i > x̂′′i−1

= −∞, if x̂′′i < x̂′′i−1

∈ [−∞,+∞], if x̂′′i = x̂i−1”

,

and −∆′′i,j = ∆′′j,i =
∑i

u=j+1 ∆′′u−1,u. Denote by {x̂′i,∆′i,j}
m+tk
j,i=m+1 the cutoffs of the tk scores

specified by the (Kk−1, tk)-robust disclosure under the new disclosure. Suppose there exists

m + 1 ≤ i ≤ m + tk such that x̂′i > max{x̂(Kk−1,tk), θk−1} and such i’s constitute a set T =

{τ1, τ2, . . . , τL} where τ1 < τ2 . . . < τL. Consider i ∈ T . There must exist m+1 ≤ j ≤ m+ tk
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such that ∆′j,i < ∆′′j,i; otherwise,

x̂′i ≤ c′i + r′i

∫ 1

0

a

(
m∑
j=1

wj +

m+tk∑
j=m+1

w′j
[
1− Φ

(
Φ−1(1−mi)−∆′′j,i

)])
dmi = x̂′′i ≤ x̂(Kk−1,tk).

Let ξ(i) be the smallest j such that ∆′j,i < ∆′′j,i. Similar to Part I, we will encounter

contradiction. Hence, for m+ 1 ≤ i ≤ m+ tk, x̂
′
i ≤ max{x̂(Kk−1,tk), θk−1} < θk.

Part III: investors with cutoffs greater than θk under the original disclosure.

Note that all other investors have cutoffs smaller than θk under the new disclosure. Since

the equation system in Proposition 3 has a unique solution, the cutoffs of these investors

must be the same under the new disclosure as they are under the original disclosure.

Proof of Proposition 6

According to (23) and ri = Er for all i, if i ∈ {pk, pk + 1, ..., pk+1 − 1},

pk+1−1∑
j=pk

wjx̂j =

pk+1−1∑
j=pk

wjx̂i =

pk+1−1∑
j=pk

wjcj + Er

[
Aκ

(
pk+1−1∑
j=1

wj

)
− Aκ

(
pk−1∑
j=1

wj

)]
.

Then the average cutoff is∑t
j=1wjx̂j

W
=

∑t
j=1wjcj

W
+ Er

Aκ (W )

W
=

[Qc · c+ (W −Qc) · c̄]
W

+ Er · Aκ (W )

W
,

which is also a lower bound of the maximum cutoff. Under nondisclosure, all investors have

the same cutoff, so the maximum cutoff achieves this lower bound.

Proof of Proposition 7

For any k, the scores in the partition cell [pk, pk+1) all have the same cutoff in the limiting

case. Denote it by x̂(k). If there are two scores that have different cutoffs, then there

must exist k such that x̂(k) < x̂(k + 1). Let kmax be the maximum among them. Then

x̂(kmax + 1) = x̂(kmax + 2) = . . . = x̂(K).
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Let x̃ be the root of

pK+1−1∑
i=pkmax+1

(x̃− Ec)wiri
x̂(kmax + 1)− Ec

+

pkmax+1−1∑
i=pkmax

(x̃− Ec)wiri
x̂(kmax)− Ec

=

pK+1−1∑
i=pkmax

wiri.

Then x̂(kmax) < x̃ < x̂(kmax + 1).

Consider an alternative disclosure with

r′i =


ri, ∀i < pkmax

(x̃−Ec)ri
x̂(kmax)−Ec ∀pkmax ≤ i < pkmax+1

(x̃−Ec)ri
x̂(kmax+1)−Ec ∀i ≥ pkmax+1

and the same mass wi for each score as the original disclosure. We guess the equilibrium is

(x̂′1, . . . , x̂
′
n), where x̂′i = x̂i if i < pkmax , x̂

′
i = x̃ if ∀i ≥ pkmax , and its {∆′i,j}tj,i=1 is the same

as the original one {∆i,j}tj,i=1. To verify that this is indeed the equilibrium, we need to show

that ∀i, j,

x̂′i = Ec+ r′i

∫ 1

0

aκ

(
n∑
j=1

wj
[
1− Φ

(
Φ−1(1−mi)−∆′j,i

)])
dmi,

and x̂′i = x̂′j if ∆′ij is finite. It is easy to see

x̂′i − Ec
r′i

=
x̂i − Ec
ri

=

∫ 1

0

aκ

(
n∑
j=1

wj
[
1− Φ

(
Φ−1(1−mi)−∆j,i

)])
dmi

=

∫ 1

0

aκ

(
n∑
j=1

wj
[
1− Φ

(
Φ−1(1−mi)−∆′j,i

)])
dmi.

In addition, for i, j < pkmax , if ∆′ij is finite, ∆ij is finite, then x̂′i = x̂i = x̂j = x̂′j; for i < pkmax

and j ≥ pkmax , ∆′ij is infinite; for i, j ≥ pkmax , x̂
′
i = x̂′j. So, this is indeed the equilibrium,

and it has the same partition structure as the original one. This alternative disclosure has

a strictly lower maximum cutoff; i.e., maxi {x̂′i} = x̃ < x̂(kmax + 1) = maxi {x̂i} . To prevent

such decrease in the maximum cutoff, the (κ, t)-robust disclosure must result in all scores

being either entangled or adjacent to each other.
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Proof of Proposition 8

According to Proposition 4, the switching cutoff of investors in the k-th partition cell is

x̂(k) = Ec+

(
pk+1−1∑
j=pk

wj
rj

)−1 [
Aκ

(
pk+1−1∑
j=1

wj

)
− Aκ

(
pk−1∑
j=1

wj

)]
.

So, the maximum cutoff

max
i
{x̂i} ≥ Ec+

(
pk+1−1∑
j=pk

wj
rj

)−1 [
Aκ

(
pk+1−1∑
j=1

wj

)
− Aκ

(
pk−1∑
j=1

wj

)]

⇔

(
pk+1−1∑
j=pk

wj
rj

)[
max
i
{x̂i} − Ec

]
≥ Aκ

(
pk+1−1∑
j=1

wj

)
− Aκ

(
pk−1∑
j=1

wj

)
.

Summing over k, we obtain(
t∑
i=1

wi
ri

)[
max
i
{x̂i} − Ec

]
≥ Aκ (W )⇒ max

i
{x̂i} ≥ Ec+

Aκ (W )∑t
i=1

wi
ri

.

By Lemma 1, we obtain

wi
ri
≤ wir − wiri

r − r
1

r
+
wiri − wir
r − r

1

r
⇒

t∑
i=1

wi
ri
≤ Qr

r
+
W −Qr

r
.

The last inequality holds if any ri is not equal to r or r. So,

max
i
{x̂i} ≥ Ec+

Aκ (W )
Q
r

+ W−Q
r

.

Consider the disclosure r1 = r, r2 = r, w1 = Qr and w2 = W − Qr. By rAκ(Qr)
Qr

≥
rAκ(W )−Aκ(Qr)

W−Qr , they must have the same cutoff, Ec+ Aκ(W )
Q
r

+W−Q
r

. Therefore, the robust disclosure

is a uniquely full revelation of information.
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Proof of Proposition 9

Suppose kmax is the greatest score that is entangled with another score. We prove the

statement for any kmax ≥ 2 by mathematical induction.

First, consider kmax = 2 and t = 2. The two scores are entangled and have a common

cutoff Ec + Aκ(W )
w1
r1

+
w2
r2

. Consider an alternative disclosure r′1 and r′2 that satisfy w1r1 + w2r2 =

w′1r
′
1 +w′2r

′
2, w1 +w2 = w′1 +w′2, and r′1 = r1− δ(r1− r), r′2 = r2 + δ(r− r2). Since r′1 and r′2

are entangled when δ = 0 and are separate when δ = 1, there must exist a δ′ > 0 such that

they are adjacent; i.e., r′1
Aκ(w′1)

w′1
= r′2

Aκ(w1+w2)−Aκ(w′1)

w1+w2−w′1
. Note for any δ > 0, w1

r1
+ w2

r2
<

w′1
r′1

+
w′2
r′2

.

So when r′1 and r′2 are adjacent, their maximum cutoff is strictly lower than the original one.

Second, consider kmax = 2 and t ≥ 3. Only r1 and r2 are entangled. The scores 2 ∼ t

are adjacent. All scores have the common cutoff x̂3 = Ec + r3
Aκ(w1+w2+w3)−Aκ(w1+w2)

w3
. Con-

sider the mean-preserving spread of {(r1, w1), (r2, w2)}, {(r′1, w′1), (r′2, w
′
2)} where r′1 = r1,

r′2 = r2 + δ, w′1r
′
1 + w′2r

′
2 = w1r1 + w2r2, and w′1 + w′2 = w1 + w2. We show that

there exists δ′ such that r′1
Aκ(w′1)

w′1
= r′2

Aκ(w1+w2)−Aκ(w′1)

w1+w2−w′1
. Note that δ′ ∈ [0,+∞). To see

this, on one hand, since only r1 and r2 are entangled under the original disclosure, when

δ = 0, r′1
Aκ(w′1)

w′1
> r′2

Aκ(w1+w2)−Aκ(w′1)

w1+w2−w′1
. On the other hand,

Aκ(w1+w2)−Aκ(w′1)

w1+w2−w′1
≥ aκ(w1 + w2)

and r′1
Aκ(w′1)

w′1
< r1aκ(0), when δ is sufficiently large, r′1

Aκ(w′1)

w′1
< r′2

Aκ(w1+w2)−Aκ(w′1)

w1+w2−w′1
. There-

fore, there exists δ′ > 0 such that the equation holds. Consider an alternative disclosure

(r′1, r
′
2, r3, . . . rt) that replaces {(r1, w1), (r2, w2)} with the {(r′1, w′1), (r′2, w

′
2)} associated with

δ′ while keeping {(ri, wi)}ni=3 unchanged. Since

r′1
Aκ(w

′
1)

w′1
= r′2

Aκ(w1 + w2)− Aκ(w′1)

w1 + w2 − w′1
=

(
w′1
r′1

+
w1 + w2 − w′1

r′2

)−1

· Aκ(w1 + w2)

<

(
w1

r1

+
w2

r2

)−1

· Aκ(w1 + w2) = r3
Aκ(w1 + w2 + w3)− Aκ(w1 + w2)

w3

,

it is straightforward to see that under the alternative disclosure, the scores 3 ∼ t are still

adjacent to each other and their common switching cutoff is still x̂3; the scores 1 and 2 are

adjacent and have a common cutoff strictly lower than x̂3. That means, each partition cell

has only one score. Following the proof of Lemma 7, we can find a disclosure under which

all scores are adjacent in this case and the maximum cutoff is strictly lower.

Next, suppose the statement holds for kmax < k(≥ 3) and any t. Consider kmax = k
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and any t. Consider an alternative disclosure that replaces (rk−1, rk) with one of its mean-

preserving spread (r′k−1, r
′
k) while keeping other scores unchanged. Specifically, r′k−1 = rk−1−

δ and r′k = rk. Consider the process that δ increases until r′k−1 = rk−2 or r′k−1 and r′k are

adjacent, whichever is first. We conjecture that the cutoff of r′k is always decreasing and

rk+1, . . . rt have the same cutoff as under the original disclosure. Suppose the partition cell

that contains r′k−1 and r′k consists of the scores {n(δ), . . . , k − 1, k}. Denote it as P (δ). In

this process, P (δ) may experience three kinds of changes.

1. P (δ) does not change. Then the cutoff of r′k

x̂′k = Ec+

 k−2∑
j=n(δ)

wj
rj

+
wk−1

r′k−1

+
wk
r′k

−1 Aκ( k∑
j=1

wj

)
− Aκ

n(∆)−1∑
j=1

wj


is strictly decreasing in δ.

2. P (δ) absorbs some scores below n(δ). Denote the P (δ) before and after the change

by P (δ−) and P (δ+). In the instant when the change happens, the score n(δ−) − 1

must be adjacent to P (δ−) and the scores {n(δ+), . . . , n(δ−)− 1} are either entangled

or adjacent. So, in this instant,

x̂′k = Ec+

 k−2∑
j=n(δ−)

wj
rj

+
wk−1

r′k−1

+
wk
r′k

−1 Aκ( k∑
j=1

wj

)
− Aκ

n(∆−)−1∑
j=1

wj

 ,
and also

x̂′k = Ec+

 k−2∑
j=n(δ+)

wj
rj

+
wk−1

r′k−1

+
wk
r′k

−1 Aκ( k∑
j=1

wj

)
− Aκ

n(∆+)−1∑
j=1

wj

 .
This implies that x̂′k has no jump when the change happens.

3. P (δ) drop some scores in {n(δ), . . . k − 2}. Following the same analysis of the second

case, x̂′k has no jump when the change happens.

We have verified the conjecture. Then, no matter for what reason the process stops, we end

up with a new disclosure with kmax ≤ k − 1. If k = t, its maximum cutoff is strictly lower
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than the original one. If k < t, when the process stops, x̂′k < x̂k ≤ x̂k+1. Following the proof

of Lemma 7, we can find another disclosure whose maximum cutoff is strictly lower than

x̂k+1 and kmax ≤ k − 1.

We can iterate this procedure finite times and end up with a disclosure with all scores

adjacent and its maximum cutoff strictly lower than that of the original one.

Proof of Proposition 10

By Proposition 9, we focus on disclosures with all scores adjacent. For any disclosure like

this, suppose their common cutoff is x̂. Then ∀k, x̂ = Ec + rk
Aκ(

∑k
i=1 wi)−Aκ(

∑k−1
i=1 wi)

wk
, where∑t

i=1wi = Wand
∑t

i=1wiri = (W −Qr)r +Qrr.

Part I: x̂r (W,Qr, κ) is smaller than the maximum cutoff under any finite disclo-

sure.

Consider Ω̃(r;W, x̂, κ) that is defined in Appendix A.1. Since r1 ≥ r and r1
Aκ(w1)
w1

=

x̂ − Ec = rAκ(m)
m

, it is easy to see that m ≤ w1. Similarly, m ≤ wt. Then for any k, there

exists r̃k such that Ω̃(r̃k;W, x̂, κ) =
∑k

i=1wi. For the part of Ω̃(r;W, x̂, κ) over [r̃k−1, r̃k], we

have

(x̂− Ec)
∫ r̃k

r=r̃k−1

1

r
dΩ̃(r;W, x̂, κ) =

∫ r̃k

r=r̃k−1

aκ

(
Ω̃(r;W, x̂, κ)

)
dΩ̃(r;W, x̂, κ)

= Aκ

(
k∑
i=1

wi

)
− Aκ

(
k−1∑
i=1

wi

)
=
x̂− Ec
rk

wk. (29)

Since by Cauchy-Schwarz inequality,∫ r̃k

r=r̃k−1

1

r
dΩ̃(r;W, x̂, κ) ·

∫ r̃k

r=r̃k−1

rdΩ̃(r;W, x̂, κ) ≥ w2
k =

wk
rk
wkrk,

we have
∫ r̃k
r=r̃k−1

rdΩ̃(r;W, x̂, κ) ≥ wkrk. Summing over k, we have

r·Q̃
(
X̂;W,κ

)
+r̄·
[
W − Q̃

(
X̂;W,κ

)]
=

∫ r

r=r

rdΩ̃(r;W, x̂, κ) ≥
t∑
i=1

wiri = r·Qr+r̄·(W −Qr) ,
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so Q̃ (x̂;W,κ) ≤ Qr. Since Q̃
(
X̂;W,κ

)
is decreasing in X̂, x̂ ≥ x̂r (W,Qr, κ) . Therefore,

x̂r (W,Qr, κ) is the lower bound of the maximum cutoff.

Part II: there exists a sequence of t-score disclosures
{

Ω(t)

}
such that their max-

imum cutoff converges to x̂r (W,Qr, κ) as t→ +∞.

For any feasible X̂, consider a t-score disclosure (r1, . . . rt) as follow: (r1, w1) = (r,m),

(rt, wt) = (r,m); for 2 ≤ k ≤ t − 1, wk = δ = W−w1−wt
t−2

, and rk satisfies X̂ = Ec +

rk
Aκ(w1+(k−1)δ)−Aκ(w1+(k−2)δ)

δ
.

Let S(X̂; t) , w1r +
∑t−1

i=2 δri + wtr be the sum of r. S(X̂; t) is continuous in X̂. There

exists an x̂ such that S(x̂; t) = r · Qr + r̄ · (W −Qr). In this case, the disclosure is feasible

and all scores are adjacent and have the common cutoff x̂. Denote this disclosure by Ω(t).

Let S(x̂) ,
∫ r
r=r

rdΩ̃(r;W, x̂, κ).

Next, we compare S(x̂; t) with S(x̂). Similar to the above, suppose r̃k satisfies Ω̃(r̃k;W, x̂, κ) =∑k
i=1wi = w1 + (k − 1)δ. Then We have

(x̂− Ec)
∫ r̃k

r=r̃k−1

1

r
dΩ̃(r̃k;W, x̂, κ) = Aκ(w1 + (k − 1)δ)− Aκ(w1 + (k − 2)δ) =

x̂− Ec
rk

δ

S(x̂)− S(x̂; t) =

∫ r+

r=r−
rdΩ̃(r;W, x̂, κ)−

t−1∑
k=2

δrk =
t−1∑
k=2

[∫ r̃k

r=r̃k−1

rdΩ̃(r;W, x̂, κ)− δrk

]
.

Note that[∫ r̃k

r=r̃k−1

rdΩ̃(r;W, x̂, κ)− δrk

]
δ

rk
=

∫ r̃k

r=r̃k−1

rdΩ̃(r;W, x̂, κ) ·
∫ r̃k

r=r̃k−1

1

r
dΩ̃(r;W, x̂, κ)− δ2

=

∫ r̃k

z=r̃k−1

∫ r̃k

y=r̃k−1

y · 1

z
dΩ̃(y;W, x̂, κ)dΩ̃(z;W, x̂, κ)− δ2

≤
∫ r̃k

z=r̃k−1

∫ r̃k

y=r̃k−1

r̃k
r̃k−1

dΩ̃(y;W, x̂, κ)dΩ̃(z;W, x̂, κ)− δ2

=
r̃k − r̃k−1

r̃k−1

δ2
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Since

w(r) =
da−1

κ

(
x̂−Ec
r

)
dr

=
1

−a′κ
[
a−1
κ

(
x̂−Ec
r

)] x̂− Ec
r2

≥ 1

sup{−a′κ}
r
Aκ(W )

W

1

r2 > 0

is bounded from below by a positive number, inf{w(r)} exists and is positive. Then

δ =

∫ r̃k

r̃k−1

w(r)dr ≥ (r̃k − r̃k−1) inf{w(r)} ⇒ r̃k − r̃k−1

r̃k−1

≤ δ

r̃k−1 inf{w(r)}
≤ δ

r inf{w(r)}
,

so ∫ r̃k

r=r̃k−1

rdΩ̃(r;W, x̂, κ)− δrk ≤
rk

r inf{w(r)}
δ2 ≤ r

r inf{w(r)}
δ2.

Summing over k, we obtain

S(x̂)− S(x̂; t) ≤ (t− 2)r

r inf{w(r)}
δ2 ≤ Wr

r inf{w(r)}
δ.

As t→ +∞, we have δ → 0, so

S(x̂)→ r ·Qr + r̄ · (W −Qr)⇒ Q̃ (x̂;W,κ)→ Qr.

Since x̂r (W,Qr, κ) is continuous in Qr, as t→ +∞, x̂r

(
W, Q̃ (x̂;W,κ) , κ

)
→ x̂r (W,Qr, κ) ,

i.e., x̂ → x̂r (W,Qr, κ). So, by increasing the number of scores, we can make the common

cutoff of Ω(t), which is also its maximum cutoff, arbitrarily close to x̂r (W,Qr, κ).

Part III: The quantile functions of (κ, t)-robust disclosures converge to that of

Ω(·;W,Qr, κ) in L1-norm as t→∞.

Denote the (κ, t)-robust disclosure by {(ri;wi)}ti=1 and its corresponding common cutoff

as x̂. Suppose r̃k satisfies Ω̃(r̃k;W, x̂, κ) =
∑k

i=1wi. As t→ +∞, x̂→ x̂r (W,Qr, κ). By the

continuity of Ω̃(·;W, x̂, κ) in x̂, it is easy to see that the quantile functions of Ω̃(·;W, x̂, κ)

converge to that of Ω(·;W,Qr, κ) in L1-norm as t → ∞. Then our goal is to prove that as

t→ +∞,
∑t

k=1

∫ r̃k
r=r̃k−1

|r − rk| dΩ̃(r;W, x̂, κ)→ 0. Since

t∑
k=1

∫ r̃k

r=r̃k−1

∣∣∣∣1r − 1

rk

∣∣∣∣ dΩ̃(r;W, x̂, κ) ≥ 1

r2

t∑
k=1

∫ r̃k

r=r̃k−1

|r − rk| dΩ̃(r;W, x̂, κ),
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it suffices to prove that as t→ +∞,
∑t

k=1

∫ r̃k
r=r̃k−1

∣∣∣1r − 1
rk

∣∣∣ dΩ̃(r;W, x̂, κ)→ 0.

Consider any 1 ≤ k ≤ t. Let Λk ≡
∫ r̃k
r=r̃k−1

∣∣∣1r − 1
rk

∣∣∣ dΩ̃(r;W, x̂, κ). Following (29),∫ r̃k
r=r̃k−1

1
r
dΩ̃(r;W, x̂, κ) = wk

rk
. Then it is easy to see r̃k−1 ≤ rk ≤ r̃k. Suppose y and z satisfy∫ rk

r=r̃k−1

1
r
dΩ̃(r;W, x̂, κ) = 1

y

∫ rk
r=r̃k−1

dΩ̃(r;W, x̂, κ) and
∫ r̃k
r=rk

1
r
dΩ̃(r;W, x̂, κ) = 1

z

∫ r̃k
r=rk

dΩ̃(r;W, x̂, κ).

Then y ≤ rk ≤ z. Denoting
∫ rk
r=r̃k−1

dΩ̃(r;W, x̂, κ) by u, we have

1

y
u+

1

z
(wk − u) =

wk
rk
, (30)(

1

y
− 1

rk

)
u+

(
1

rk
− 1

z

)
(wk − u) = Λk. (31)

Moreover, by Cauchy-Schwarz inequality∫ r̃k

r=r̃k−1

rdΩ̃(r;W, x̂, κ) =

∫ rk

r=r̃k−1

rdΩ̃(r;W, x̂, κ) +

∫ r̃k

r=rk

rdΩ̃(r;W, x̂, κ)

≥ u2∫ rk
r=r̃k−1

1
r
dΩ̃(r;W, x̂, κ)

+
(wk − u)2∫ r̃k

r=rk

1
r
dΩ̃(r;W, x̂, κ)

= yu+ z(wk − u).

Next, we derive a lower bound of yu + z(wk − u) − wkrk. From (30) and (31), we can

obtain 1
y

= 1
rk

+ Λk
2u

and 1
z

= 1
rk
− Λk

2(wk−u)
. Then

yu+ z(wk − u)− wkrk =
u

1
rk

+ Λk
2u

+
wk − u

1
rk
− Λk

2(wk−u)

− wkrk = r2
kΛk

[
− u

2u+ rkΛk
+

(wk − u)

2(wk − u)− rkΛk

]
.

Its derivative with respect to u is r2
kΛk

[
− rkΛk

(2u+rkΛk)2 + rkΛk
(2wk−2u−rkΛk)2

]
, which is increasing

in u. The minimum is attained at rkΛk
(2u+rkΛk)2 = rkΛk

(2wk−2u−rkΛk)2 ⇔ u = wk−rkΛk
2

. Hence,

yu+ z(wk − u)− wkrk ≥
r3
kΛ2

k

wk
.

Further,
∑t

k=1

∫ r̃k
r=r̃k−1

rdΩ̃(r;W, x̂, κ) ≥
∑t

k=1

(
wkrk +

r3
kΛ2

k

wk

)
=
∑t

k=1wkrk +
∑t

k=1

r3
kΛ2

k

wk
.

By Cauchy-Schwarz inequality,
∑t

k=1

r3
kΛ2

k

wk
·
∑t

k=1
wk
r3
k
≥
(∑t

k=1 Λk

)2
, so

∑t
k=1

∫ r̃k
r=r̃k−1

rdΩ̃(r;W, x̂, κ)−∑t
k=1wkrk ≥

(∑t
k=1

wk
r3
k

)−1 (∑t
k=1 Λk

)2 ≥ r3

W

(∑t
k=1 Λk

)2
.

As t→ +∞, x̂→ x̂r (W,Qr, κ), so
∑t

k=1

∫ r̃k
r=r̃k−1

rdΩ̃(r;W, x̂, κ)→ r ·Qr + r̄ · (W −Qr) =∑t
k=1wkrk. This implies

∑t
k=1

∫ r̃k
r=r̃k−1

∣∣∣1r − 1
rk

∣∣∣ dΩ̃(r;W, x̂, κ) =
∑t

k=1 Λk → 0.
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Proof of Proposition 11

Since κ ≡ 0 in this proof, we suppress the last argument of x̂r for notational convenience.

Part I: r/r ≤ A(qr)
qr

1−qr
A(1)−A(qr)

.

If θ̂ ≥ x̂r (1, qr) = Ec+
(
qr

r
+ 1−qr

r

)−1

·A (1), by full revelation, all investors have a common

switching cutoff x̂r (1, qr), so all banks are immune from runs. Moreover, full revelation

minimizes the common switching cutoff of all banks.

Next, consider the case θ̂ < x̂r (1, qr). Suppose the proposition does not hold. That

means, under a disclosure, a group of banks (W,Q) can be immune from runs. It is easy to

see that rA(qr)
qr
≥ A(1)

qr

r
+ 1−qr

r

≥ rA(1)−A(qr)
1−qr .

If r/r > A(Q)
Q

W−Q
A(W )−A(Q)

, then (W,Q) has strong 0-heterogeneity. According to the con-

struction of its 0-robust disclosure, x̂r (W,Q) ≥ Ec + r limx→m
A(x)
x
≥ Ec + rA(qr)

qr
> θ̂.

Contradiction!

If r/r ≤ A(Q)
Q

W−Q
A(W )−A(Q)

, (W,Q) has weak 0-heterogeneity, and its maximum cutoff cannot

be smaller than Ec+ A(W )
Q
r

+W−Q
r

. Since

A(1)− A(W )
1−W
r

<
A(W )− A(Q)

W−Q
r

≤ A (W )
Q
r

+ W−Q
r

≤ A(Q)
Q
r

,

A(1)
qr

r
+ 1−qr

r

≤ A(1)
Q
r

+ 1−Q
r

= 1
Q
r

+W−Q
r

+ 1−W
r

[A (W ) + A(1)− A(W )] < A(W )
Q
r

+W−Q
r

. So Ec + A(W )
Q
r

+W−Q
r

> θ̂.

Contradiction!

Part II: r/r > A(qr)
qr

1−qr
A(1)−A(qr)

.

We prove Proposition 11 for the strong 0-heterogeneity case based on Lemma 5.

Lemma 5. Suppose r/r > A(qr)
qr

1−qr
A(1)−A(qr)

.

� For any Q ∈ [0, qr] and θ̂ ∈ [x̂r (Q,Q) , x̂r (1, qr)), x̂r (W,Q) = θ̂ has a unique solution

in [Q, 1), W (θ̂, Q).

� Moreover, limr→r̄−Ω
(
r;W (θ̂, Q), Q, 0

)
= W (θ̂, Q), and W (θ̂, Q) is continuous and

strictly increasing in Q and θ̂.

55



If θ̂ ≥ x̂r (1, qr), the 0-robust disclosure for the whole banking system, Ω (·; 1, qr, 0), can

ensure that all banks survive.

If θ̂ < x̂r (qr, qr), then θ̂ < Ec + rA(qr)
qr

. This implies that for any bank group with no

more than a mass qr of r-type banks, there does not exist a 0-robust disclosure such that

the common cutoff is not higher than θ̂. So, no bank can be immune from runs.

Next, we consider θ̂ ∈ [x̂r (qr, qr) , x̂r (1, qr)). First, any group of banks (W,Q) that

has a cutoff smaller than x̂r (1, qr) must have strong 0-heterogeneity. Suppose not, i.e.,

r/r ≤ A(Q)
Q

W−Q
A(W )−A(Q)

. Then its lowest cutoff is

Ec+
A (W )

Q
r

+ W−Q
r

≥ Ec+ r
A (W )− A (Q)

W −Q
≥ Ec+ r

A (1)− A (qr)

1− qr
> x̂r (1, qr) .

Second, consider any bank group (W,Q) that can be immune from runs. Suppose its max-

imum cutoff under its 0-robust disclosure is θ′ ≤ θ̂. Then W solves x̂r (W,Q) = θ′ and

W ≤ 1. By the proof of Lemma 5, we know that it must be W = W (θ′, Q). Since W (θ,Q)

is strictly increasing in θ and Q, W ≤ W (θ̂, qr). And W (θ̂, qr) can be attained uniquely by

the 0-robust disclosure for bank group (W (θ̂, qr), qr), which consists of measure qr of r-type

banks and measure W (θ̂, qr)− qr of r-type banks.

Proof of Proposition 12

Since κ ≡ 0 in this proof, we suppress the last argument of x̂c for notational convenience.

Part I: c− c ≤
[
A(qc)
qc
− A(1)−A(qc)

1−qc

]
Er

Suppose there exists a disclosure such that banks have different switching cutoffs. Because

the average switching cutoff of all investors is always x̂c (1, qc), there exists a group of banks

(W,Q) such that (W,Q) ≤ (1, qc) and x̂c (W,Q) < x̂c (1, qc), i.e.,

Q

W

[
c+ Er

A(Q)

Q

]
+
W −Q
W

[
c+ Er

A(W )− A(Q)

W −Q

]
< qc

[
c+ Er

A(qc)

qc

]
+ (1− qc)

[
c+ Er

A(1)− A(qc)

1− qc

]
.

If c + ErA(Q)
Q

< c + ErA(W )−A(Q)
W−Q , x̂c (W,Q) > c + ErA(Q)

Q
≥ c + ErA(qc)

qc
≥ x̂c (1, qc) .
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Contradiction!

If c+ ErA(Q)
Q
≥ c+ ErA(W )−A(Q)

W−Q , then c+ ErA(W )−A(Q)
W−Q ≤ x̂c (W,Q). Since

x̂c (1, Q) =Q

[
c+ Er

A(Q)

Q

]
+ (W −Q)

[
c+ Er

A(W )−A(Q)

W −Q

]
+ (1−W )

[
c+ Er

A(1)−A(W )

1−W

]
=Wx̂c (W,Q) + (1−W )

[
c+ Er

A(1)−A(W )

1−W

]
≤ x̂c (W,Q) ,

x̂c (1, qc) ≤ x̂c (1, Q) ≤ x̂c (W,Q). Contradiction!

So, no matter what the disclosure is, all banks have the same cutoff, x̂c (1, qc).

Part II: c− c >
[
A(qc)
qc
− A(1)−A(qc)

1−qc

]
Er

If θ̂ ≥ x̂c (1, qc), nondisclosure can ensure all banks immune from runs.

If θ̂ < x̂c (1, qc), only part of the banks can be immune from runs. Suppose a group of

banks (W,Q) are. Then their average cutoff must be weakly smaller than θ̂, i.e.,

x̂c (W,Q) =
Q · c+ (W −Q) · c̄

W
+ Er · A (W )

W
≤ θ̂.

We want to find the maximum W subject to this constraint. Notice that x̂c (W,Q) is de-

creasing in Q. It is easy to see that the maximum W must be a solution to x̂c (W, qc) = θ̂.

Last, we prove the following lemma in the Internet Appendix.

Lemma 6. For θ̂ < x̂c (1, qc), x̂c (W, qc) = θ̂ has a unique solution W (θ̂, qc).

Also, notice that x̂c (W,Q) ≥ x̂c (W, qc) ≥ x̂c (qc, qc). So, if θ̂ < x̂c (qc, qc), no bank can

be immune from runs under any disclosure.
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https://www.dropbox.com/s/gj6jbwg5quu5jst/Information%20Disclosure%20and%20Financial%20Stability_47LD_internet%20appendix.pdf?dl=0
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